Search published articles


Showing 2 results for Methyl Ethyl Ketone

, , , , , , ,
Volume 2, Issue 1 (5-2012)
Abstract

Introduction: Emission of volatile organic compounds through industrial processes to the environment has been received more attentions currently. Photocatalytic oxidation process as a new emerging technique in air purification can be substituted for conventional techniques such as activated carbon adsorption. In photocatalytic oxidation process, pollutant molecules decompose to water and carbon dioxide molecules. The objective of present study was the examination of influencing parameters such as concentration, relative humidity, and superficial gas velocity on photocatalytic oxidation of Methyl Ethyl Ketone (MEK) in a fluidized bed reactor.

.

Material and Method: In this study photocatalytic oxidation of MEK was examined in a fluidized bed reactor. Gamma alumina coated titanium dioxide particles under ultraviolet light were used as photocatalyst. The efficiency of photocatalytic oxidation process was determined using measurement of MEK concentrations at the inlet and outlet of the fluidized bed reactor.

.

Result: The study of MEKphotocatalytic oxidation was carried out in the concentration range of 100 to 800 PPM with 25% and 45% relative humidity. Photocatalytic degradation of MEK at the relative 45 % humidity was slightly lower than 25 %. Increasing MEK concentration from 200 to 800 PPM was led to decrease in degradation efficiency. At concentrations of 100 and 200 PPM MEK, increasing superficial gas velocity did not change the degradation efficiency, whereas, at concentrations of 200 to 800 PPM, increasing superficial gas velocity resulted in decrease in MEK degradation.

.

Conclusion: In photocatalytic oxidation of MEK, there is a competitive adsorption between water and MEK and at higher relative humidity degradation of MEK decreases. In the fluidized bed reactor increasing superficial gas velocity causes decrement in MEK photocatalytic degradation.Increasinginitial concentration of pollutant results in decreasing ofphotocatalytic efficiency due to the limited number of active sites on the catalyst surface.


Masoomeh Vahabi Shekarloo, Siamak Ashrafi Barzideh, Rezvan Zendehdel ,
Volume 13, Issue 3 (9-2023)
Abstract

Introduction: Several extraction techniques have been developed in recent years to determine the concentration of volatile metabolites in a biological sample. This study conducted with the aim of using the needle trap device- molecularly imprinted polymer (NTD-MIP) for the co-extraction of n-hexane and methyl ethyl ketone (MEK) in the urine matrix.
Material and Methods: Characterization of MIP was investigated by fourier-transfer infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and brunauer–emmett–teller (BET). The response surface methodology - central composite design (RSM-CCD) was used to optimize the extraction conditions of n-hexane and MEK with the input variables of absorption temperature, absorption time, salt percent, and stirring speed. Method validation was performed with determination of the precision, accuracy, the limit of detection (LOD), limit of quantification (LOQ), and dynamic linear range.
Results: The optimum conditions were an extraction time of 60 min, an absorption temperature of 65 °C, 22% of salt, and a stirring speed of 250 rpm. The linear ranges of n-hexane and MEK were determined in ranges of 30-500 and 30-4000 µg/L, respectively. The intra-day and enter-day relative standard deviation were evaluated in the range of 3 to 10 and 1 to 7, respectively. The average recovery of n-hexane and MEK were estimated 99.3 ± 0.8 and 99 ± 0.9, respectively.
Conclusion: The HS-NTD method is suggested as a suitable method for determining very low amounts of MEK in urine along with n-hexane.


 

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb