Search published articles


Showing 2 results for Pressure Drop

Roohollah Ghasemi, Farideh Golbabaei, Mohammad Javad Jafari, Mohammad Reza Pourmand, Sasan Rezaei, Ramin Nabizadeh, Ensieh Masoorian,
Volume 9, Issue 2 (6-2019)
Abstract

Introduction: Air pollution is now recognized as an important environmental and health concern. Biological control processes, due to their durable, cost-effective and eco-friendly, have become a good alternative to physic-chemical methods. Biotechnology is based on the activity of microorganisms.
The aim of this study was to compare the capability of Pseudomonas Putida PTCC 1694 (bacteria) and Polarotus Stratus IRAN 1781C (mushroom) in the removal of toluene from the air stream and its biodegradation under same operating conditions.
Material and Methods: To this purpose, a bio filter containing two parallel columns was designed and constructed on a laboratory scale and the experiments were carried out based on measuring the removal efficiency (RE), elimination capacity (EC) and pressure drop in these two columns. Thus, the bacteria were inoculated in one of the columns and in the other the fungus was inoculated.
Results: The bacterial testing lasted for 20 days and the fungal testing lasted for 16 days. The contaminant loading rates (LR) for bacterial and fungal bio filters were 11.65±2.26 and 11.94±2.56 g/m3.h, respectively. The results showed that the fungal bio filter was more capable of eliminating of toluene vapor than bacterial bio filter (9.65±3.53 vs 9.18±2.6 g/m3.h). However, the pressure drop in the bacterial bio filter was lower than the fungal bio filter (1±0.28 vs 1.1±0.32 cm water).
Conclusion: According to the results, fungal bio filtration appeared to be more successful than bacterial bio filtration in the removal of toluene.
Zahra Tarin, Abdulrahman Bahrami, Mohsen Goodarzi, Farshid Ghorbani-Shahna,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Generally, geometrical parameters of the cyclone have a profound effect on determining its performance. The air outlet (Vortex Finder) as one of the cyclone’s components has a significant impact on the cyclone’s internal flow pattern, pressure drop and even dust removal efficiency.
Material and Methods: Two different air outlets were designed in order to be easily installed and removed. The ribs (both in the opposite and the same swirl direction with the air flow) were inserted at the inner wall of the vortex finder. The step length of the blades was calculated to be 1.5. The dust feeder was injected the silica particles with a concentration about of 2.1 gr/m3 into the inlet air. The results of dust removal efficiency of the cyclone were calculated and compared for three groups of total dust, PM10 and PM2.5 in different experimental conditions.
Results: Installation of spiral blades in same swirl direction as the air flow inside the cyclone increased 7.75, 7.73 and 6.75 percent in total efficiency, PM10 and PM2.5, respectively. The dust removal efficiencies for total dust, PM10 and PM2.5 increased by 2.6%, 2.33% and 1.5%, respectively, when the swirl direction of ribs and air flow was the opposite. The effect of helical blades on pressure drop for the first experimental setup (same direction) decreased by (- 2.5%) and in the second one (opposite direction) increased by (+ 2.03%). The best quality factor was also calculated for the cyclone with the blade aligned with the air flow direction.
Conclusion: Use of ribs in the inner wall of the cyclone vortex finder,  especially when the rotation direction of the ribs and airflow are the same, leads to a decrease in pressure drop and increase in dust collection efficiency which finally leads to improvement of cyclone performance.


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb