Search published articles


Showing 2 results for Process Safety

M J Jafari, E Zarei, A Dormohammadi,
Volume 3, Issue 1 (5-2013)
Abstract

Introduction: Process industries, often work with hazardous and operational chemical units with high temperature and pressure conditions, such as reactors and storage tanks. Thus, probabilities of incidence such as explosions, and fire are extremely high, The purpose of this study was to present a comprehensive and efficient method for the quantitative risk assessment of fire and explosion in the process units.

.

Material and Method: The proposed method in this study is known as the QRA and includes seven steps. After determination of study objectives and perfect identification of study process, first, qualitative methods are used to screen and identify hazard points and the possible scenarios appropriate are identified and prioritized. Then, estimation of frequency rate are done using past records and statistics or Fault Tree Analysis along whit Event Tree. PAHST professional software and probit equations are used in order to consequence modeling and consequence evaluation, respectively. In the last step by combination of consequence and frequency of each scenario, individual and social risk and overall risk of process or under study unit was calculated.

 .

Result: Applying the proposed method showed that the jet fire, flash fire and explosion are most dangerous consequence of hydrogen generation unit. Results showed that social risk of the both fire and explosion caused by full bore rupture in Desulphrizing reactor (Scenari3), Reformer (scenario 9) and Hydrogen purification absorbers are unacceptable. All of the hydrogen generation unit fall in ARARP zone of fire individual risk (FIR) and FIR up to 160 m of boundary limit unit is unacceptable. This distance is not only beyond of hydrogen generation unit boundary limit, but also beyond of complex boundary limit. Desulphurization Reactor (75%) and Reformer (34%) had the highest role in explosion individual risk in the control room and their risks are unacceptable.

 .

Conclusion: Since the proposed method is applicable in all phases of process or system design, and estimates the risk of fire and explosion by a quantitative, comprehensive and mathematical-based equations approach. It can be used as an alternative method instead of qualitative and semi quantitative methods.


Elahe Chubineh, Saber Azami Aghdash, Ali Esmaili, Seyed Shamseddin Alizadeh,
Volume 14, Issue 2 (6-2024)
Abstract

Introduction: For years, chemical process industries have reported the unexpected release of highly hazardous liquids and gases. A disaster could not be avoided when these materials were not adequately controlled. The issue of Process Safety Management (PSM) is still being discussed in developing and developed countries. PSM was established to manage the risks of a company’s personnel, properties, products, environment, and credit risks. This study aimed to review the challenges and achievements of PSM implementation and provide recommendations for improvement.
Material and Methods: A collection of scholarly articles published from 2000 to 2023, such as Science Direct, WOS, PubMed, and Scopus, was chosen through a systematic, meticulous review. After thoroughly examining these abstracts, titles, and complete contexts, 49 articles were finally selected for inclusion in the study and classified based on different criteria, such as publication year, authors, achievements, and challenges.
Results: PSM in the United States has been chiefly studied due to the high number of chemical process industries and its presence in the form of OSHA legislation in this country. The areas of operations, audits, and resources have the most challenges in implementing PSM. On the other hand, reducing the severity of incidents in chemical processes and increasing productivity are considered the most significant achievements of PSM implementation.
Conclusion: PSM as an interdisciplinary field has improved  and become more effective over the years.. However, incidents still exist, and the number can increase, considering the growth of industries’ chemical processes. Therefore, a deep look at the issues of risk-based regulations, competency, operational excellence, and learning from incidents is necessary to achieve excellence in PSM.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb