Search published articles


Showing 4 results for Reaction Time

M. Naserpour, M. J. Jafari, M. R. Monazzam, H. R. Pouragha Shahneshin, M. Saremi, S. Jam Bar Sang,
Volume 4, Issue 1 (5-2014)
Abstract

Introduction: In the most industrial environment, workers are exposed to noise everyday. Exposure to this physical hazardous agent can cause immediate as well as delayed adverse effects. Cognitive performance decrement is one of the adverse effects of noise exposure which its main consequences is occupational accidents. This study attempted examine the effect of exposure to different levels of noise with harmonic indices of neutral, treble and bass on the cognitive performance.

.

Material and Method: In this analytical-descriptive study, the cognitive tests were performed by 33 students, aged 23-35 years. During the tests, participants were exposed to three type of noise including neutral, treble and bass at 4 different levels of 45, 75, 85 and 95 decibels. In order to assess students cognitive performance, continuous performance test (CTP) software was employed, which investigated attrition and reaction time.

.

Result: The results of this study revealed that exposure to neutral noises with Noise Harmonic Index (NHI) of +3dB at the frequency of 1000 Hz, the maximum percentage of attention (99.88 %) was belonged to Sound Pressure Level (SPL) of 95 decibels. Maximum percentage of attention due to exposure to the treble noise with NIH -105 dB at the noise frequency of 8000 Hz (100%) and bass noise with NIH of 407 dB at the frequency of 500 Hz (99.92%) were belonged to the SPL of 95 and 85 dBA, respectively. Moreover, the result showed that the effect of bass noise with NIH of 4.5 dB and frequency of 500 Hz on reduction of attention were more than treble noise with NIH of -105 dB and frequency of 8000 Hz. Under exposure to neutral noise with NIH of 3 dB and frequency of 1000 Hz, the longest reaction time (2.594 Second) was observed at the SPL of 85 dBA. The longest reaction time for treble noise with NIH of -105 dB and frequency of 8000 Hz (2.786 Second) and for the bass noises with NIH of 4.5 dB and frequency of 500 Hz (2.594 Second) were also belonged to the SPL of 85 and 75 dBA, respectively.

.

Conclusion: The results showed that bass noises (frequency of 500 Hz) increased reaction time, in comparison with treble noises (frequency of 8000 Hz).


F. Golbabaei, A. Mazloumi, S. Mamhood Khani, Z. Kazemi, M. Hosseini, M. Abbasinia, S. Fahang Dehghan,
Volume 5, Issue 1 (4-2015)
Abstract

Introduction: Working in hot and inappropriate climate condition is one of the most common problems of occupational health which can lead to heat induced diseases and even death. Heat stress may impair the cognitive processes involved in decision-making and converting simple tasks to complex ones. The aim of present study was to assess selective attention and reaction time among workers in a casting unit of a car manufacturing industry and to investigate the effects of heat stress on mentioned variables.

.

Material and Method: In this retrospective cohort study 70 workers from a hot industry were selected in two of exposed and control groups. First, demographic questionnaire was completed for each of the participants and noise and light were measured as the likely confounding factors. Stroop test 1, 2, and 3 were done before and during the work in order to determine the effects of heat on selective attention and reaction time. Besides,WBGT were measured at the ankle, waist, and head levels. Data were analyzed using SPSS software, version 18.

Result.: WBGT measurements showed that the mean WBGT were 33 and 16.7 for the exposed and not exposed groups, respectively. Moreover, no significant relationships were observed between test duration, reaction time, and number of errors in Stroop tests 1 and 2 and the level of heat (P-value<0.0001). However, the mentioned variables had a significant positive correlation with Stroop test 3. Additionally, for exposed group variables of test duration, reaction time, and number of errors in Stroop 3 were significantly higher than those of control group.

.

Conclusion: According to the findings in present study, heat stress causes an increase in reaction time and a decrease in selective attention. Thus, heat can be assumed as a stressor in hot work environments and the heat should be taken into account while design of job and tasks which needed selective attention or reaction time.


Zohreh Mohebian, Habibollah Dehghan, Ehsanollah Habibi,
Volume 7, Issue 3 (9-2017)
Abstract

Introduction: Heat stress is one of the Hazardous physical agents in the workplace, which can cause impairment of cognitive performance. The current study aimed to evaluate the effect of different levels of heat stress on attention and reaction time in a laboratory condition.

Material and Method: This experimental study was done among 33 students included 17 males and 16 females. Mean age of the participants was 22.1(SD=2.3). Attention and reaction time parameters were evaluated using the continuous performance test and  reaction time measurement device respectivlely, after exposure to different heat levels (22°C and 37°C). Data were analyzed using ANOVA test and SPSS 20 software.  

Result: The results of tests attention and reaction time showed that the average of attention percentage was decreased and the average of reaction time increased by increasing the heat level, with a  statistical differences of  (P˂0.001) in both cases. Attention percent in terms of exposure to 22°C temperature was significantly higher than 37°C (P˂0.001). But, reaction time was significantly higher than with the exposure to 37°C temperature than 22°C (P˂0.001).

Conclusion: The results of this study showed that, heat by increasing reaction time and decreasing attention leading to an impairment  in the individual’s cognitive performances. Therefore, in jobs such as control rooms and various industries that need attention, concentration and quick reaction, it is necessary to consider and optimize the heat conditions in order to increase the level of attention and decrease of reaction time.


Azar Mehrabi Matin, Mahsa Alefi, Mohammad Reza Monazzam, Adel Mazloumi, Kamal Azam,
Volume 12, Issue 1 (3-2022)
Abstract

Introduction: The noise could affect some aspects of human health, including the cognitive performance. In addition to sound pressure level and exposure time, the psychoacoustic features of noise may cause destructive effects on humans. A few recent studies have been conducted on effect of sound quality on cognitive performance. This study aims to find the noise loudness and sharpness levels as the most destructive effects on human cognitive performance.
Material and Methods: This was a cross-sectional study on 10 male students of Tehran University of Medical Sciences. The Noises were generated in two channels that the left channel produced the pink noise as a background noise. The pink noise loudness and sharpness were 19.7 sone and 2.49 acum, respectively. The right channel generated noises with different loudness and sharpness levels the noise loudness ranged from 8.87 to 67.9 sone and the noise sharpness ranged from 1.07 to 6.4 acum. Finally, ten noises with different loudness and sharpness were applied. The students were exposed to ten different types of noise and a silent condition. The Mathematical Problem Solving Task (MPST) test was performed to assess cognitive performance. The reaction time and the accuracy rate were measured after 5 minutes of noise exposure. Data were analyzed by SPSS (ver. 22). P< 0.05 was considered as significant level.
Results: The mean reaction time and the mean accuracy rate increased with the sharpness level.  However, alteration in the loudness and sharpness levels had no significant effect on the speed and accuracy of students. Performance speed increased in noise 3 with the highest loudness (L=67.9, SH=1.07) in comparison with the silent condition (p-value=0.05). The mean accuracy rate in exposure to the noise 9 reduced in comparison with silence (p-value=0.04)
Conclusion: Different levels of psychoacoustic features had no significant effect on the cognitive performance parameters. Although, the accuracy rate and the reaction time decreased in noises 9, the sharpest noise, and 3, the loudest noise, in comparison to the silence, respectively.

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb