Search published articles


Showing 4 results for Sound Absorption Coefficient

Marziye Pirani, Mohammad Raza Monazzam, Seyed Qasem Pourjandaghi,
Volume 11, Issue 1 (3-2021)
Abstract

Introduction: Reducing noise pollution has become an essential issue due to the increase in public concern and also social demands for a better lifestyle. Using sound absorption materials is a preferred method to reduce the noise pollution. Undesirable properties of pure polyurethane such as poor absorption of mechanical energy in narrow frequency ranges can be improved by providing polymeric nanocomposites.  The main purpose of this study is to synthesize the polyurethane nanocomposite foams in order to improve its acoustic properties.
Material and Methods: At the first steage, pure polyurethane foam was synthesized using the pre-polymer method. Afterwards, nanocomposite foams were synthesized with different mass fractions of Nano silica. The cellular morphology of prepared nanocomposite foams was investigated by scanning electron microscopy (SEM (.Utilizing a  two-microphone impedance tube,  sound absorption coefficient (α) was calculated in the frequency ranges of 100 Hz to 1600 Hz in order to investigate the acoustic properties of the new absorbant.
Results: According to the microscopic investigations, morphology of the cells changed after adding silica nanoparticles. Also, the cell sizes were observed to be decreased by increasing the amount of silica nanoparticles. Furthermore, the acoustic analysis of nanocomposite foams indicated that the sound absorption increased by enhancing the load of silica nanoparticles.
Conclusion: In the current study, the effect of silica nanoparticles additive amount on acoustic properties of the polyurethane-based nanocomposite was investigated. Our findings depicted that the polyurethane-based nanocomposites were able to promote the sound absorption coefficient.
Reza Jafari Nodoushan, Mostafa Azimzadeh, Sahar Bagheri, Arefeh Dehghani Tafti,
Volume 11, Issue 4 (12-2021)
Abstract

Introduction: In recent years tend to use of natural fibers has increased in making sound absorbers. Fiber-based natural materials have low density, low production costs, and are biodegradable.
Material and Methods: In this study, the effect of nanoclay and the behavior of the nanocomposite specimens containing tea waste, polypropylene, and nanoclay in the sound absorption coefficient are investigated. 
Results: The results showed the sound absorption coefficient increases by increasing the tea waste weight percent of the polypropylene. 60% increase in tea waste has a special role in the absorption of sound waves at a frequency of 1000 Hz and 2500 to 6300 Hz frequency range as the TW60 N5 sample has the sound absorption coefficient 0.94 and 0.84 in 1000 and 6300 Hz frequencies, respectively. Comparison of the sound absorption coefficient of composite and nanocomposite showed that sound absorptions increase by adding nanoclay to the 5%, at frequencies above 2000 Hz.
Conclusion: Tea waste-based sound absorbers can be used in noise control due to the high acoustic absorption and no harmful effects on human health.
Ehsan Rezaieyan, Ebrahim Taban, Seyyed Bagher Mortazavi, Ali Khavanin, Hasan Asilian, Elham Mahmoudi,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Micro perforated panel (MPP) absorbents promise the next generation of sound absorbers as they have significant advantages over other porous adsorbents. In this study, we will investigate the acoustic performance of MPP absorbents made of biodegradable polylactic acid composite reinforced with natural corkwood fibers (PLA/Corkwood) by 3D printing technology.
Material and Methods: First, the effective dimensional characteristics of the parameters were determined, then, all of the samples were fabricated by the Zortrax M200 3D-Printer using the FDM method. The normal incidence sound absorption coefficient of the samples was measured using an acoustic impedance tube according to ISO 10534-2 in the frequency range of 64 to 1600 Hz. Then the effect of four geometric parameters, including hole diameter, panel thickness, perforation ratio, and air gap depth, on the absorption coefficient was studied.
Results: The findings show that the SL-MPP 12 absorbent has the highest average sound absorption coefficient (SACA) with a value of 0.28, so that at a frequency of 804 Hz it has the highest sound absorption equal to 0.91. The parametric study found that as the hole diameter increased, the values of peak adsorption and average absorption coefficient were decreased. Increasing the MPP thickness causes the absorption peak to move towards the lower frequency range. Decreasing the perforation ratio increases the peak absorption values and the average sound absorption, and the frequency with the highest absorption also moves towards the higher frequency range. The resonant frequency also depends on the depth of the air gap behind the screen. Changes in air gap depth from 30 mm to 70 mm reduced the resonant frequency by more than 35%.
Conclusion: Using 3D printing technology, sustainable MPP can be fabricated with more quality and in less time than traditional methods such as mixing and heat pressing.

Gholamreza Moradi, Sana Mohammadi, Abdolrasoul Safaiyan, Saeid Ahmadi, Mehrnia Lak,
Volume 14, Issue 1 (3-2024)
Abstract

Introduction: Disturbing noise can cause physical and mental illnesses among workers; for this reason, it is necessary to restrain it, especially in workplaces. Using sound-absorbing materials with suitable acoustic properties has been a growing trend in mitigating noise. This study aimed to improve the acoustic properties of polyurethane foam (PUF) as a sound absorber.
Material and Methods: In the present study, PUF was synthesized with different percentages of clay nanoparticles (0 -1.2 wt.%), and then the Sound Absorption Coefficient (SAC) of the synthesized PUF was measured by the acoustic impedance tube in the frequency range of 63 to 6400 Hz according to the ISIRI 9803 standard without an air gap behind the sample. The morphology of the foam was also investigated by Scanning Electron Microscope (SEM).
Results: The results showed that the addition of clay nanoparticles to PUF improved the sound absorption behavior of the samples, and the best sound absorption behavior was for PUF with 1.2% weight of nanoparticles at low frequencies (500-2600 Hz). This increase in the absorption coefficient can be due to the increase in the number and smaller size of the pores with the increase in the amount of nanoparticles in PUF.
Conclusion: This study illustrates that the incorporation of clay nanoparticles into PUF at varying percentages results in an enhanced absorption coefficient. The presence of clay nanoparticles leads to a reduction in cell size and an increase in the number of pores, consequently enhancing surface friction. The absorption coefficient was observed to increase with the growing concentration of clay nanoparticles in PUF.
 

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb