Search published articles


Showing 9 results for Toluene

, , , , ,
Volume 2, Issue 4 (2-2013)
Abstract

Introduction: There are different methods for controlling gaseous pollutants formed from air pollution sources that one of the most economical and efficient of them, is bio-filtration. The purpose of this study is Toluene removal from airstream by using the pure Pseudomonas putida bacteria as a fluidized bed in a two phase partitioning stirred tank bioreactor.Toluene ( Metyle benzene) is one of the aromatic compounds which uses as a chemical solvent.low to moderate concentration of Toluene causes fatigue, dizziness, weakness,unbalance behaviour, memory loss, insomnia, loss of appetite, loss of vision and hearing.

.

Material and Method: In this experimental study at first, pure Pseudomonas putida in an aqueous phase containing nutrients and trace elements solution was duplicated and accustomed with Toluene. then solution contained microorganisms with 10% silicon oil was entered to bioreactor. The amount of CO2 and pollutant concentrations in the entrance and exhaust of bioreactor containing Pseudomonas putida was studied during 17 days for each variable.

.

Result: Experimental findings showed that in the 0.06 m3/h and 0.12 m3/h flow rate, the efficiency of bioreactor containing Pseudomonas putida in the concentration ranges of 283 Mg/m3 to 4710 Mg/m3 was at least 97% and 25% respectively. Statistical analysis (ANOVA) showed that in two flow rates of 0.06 m3/h and 0.12 m3/h removal efficiency and mineralization percentage had significant differences .(Pvalue =0.01).

.

Conclusion: Achieving high efficiencies in pollutants removal was because of the prepared optimum conditions for Pseudomonas putida in the two phase partitioning stirred tank bioreactor with 10% organic phase.


Roohollah Ghasemi, Farideh Golbabaei, Mohammad Javad Jafari, Mohammad Reza Pourmand, Sasan Rezaei, Ramin Nabizadeh, Ensieh Masoorian,
Volume 9, Issue 2 (6-2019)
Abstract

Introduction: Air pollution is now recognized as an important environmental and health concern. Biological control processes, due to their durable, cost-effective and eco-friendly, have become a good alternative to physic-chemical methods. Biotechnology is based on the activity of microorganisms.
The aim of this study was to compare the capability of Pseudomonas Putida PTCC 1694 (bacteria) and Polarotus Stratus IRAN 1781C (mushroom) in the removal of toluene from the air stream and its biodegradation under same operating conditions.
Material and Methods: To this purpose, a bio filter containing two parallel columns was designed and constructed on a laboratory scale and the experiments were carried out based on measuring the removal efficiency (RE), elimination capacity (EC) and pressure drop in these two columns. Thus, the bacteria were inoculated in one of the columns and in the other the fungus was inoculated.
Results: The bacterial testing lasted for 20 days and the fungal testing lasted for 16 days. The contaminant loading rates (LR) for bacterial and fungal bio filters were 11.65±2.26 and 11.94±2.56 g/m3.h, respectively. The results showed that the fungal bio filter was more capable of eliminating of toluene vapor than bacterial bio filter (9.65±3.53 vs 9.18±2.6 g/m3.h). However, the pressure drop in the bacterial bio filter was lower than the fungal bio filter (1±0.28 vs 1.1±0.32 cm water).
Conclusion: According to the results, fungal bio filtration appeared to be more successful than bacterial bio filtration in the removal of toluene.
Somayeh Farhang Dehghan, Farideh Golbabaei, Asghar Sedigh Zadeh, Hamzeh Mohammadi,
Volume 9, Issue 3 (9-2019)
Abstract

Introduction: Despite nanofibers have attracted great interests for filtering particulate matters from the air stream, fewer studies have been done on the feasibility of their use in the removal of gas pollutants, while the both pollutants are present in the most workplaces. Toluene is a toxic and mutagenic substance, and chronic exposure to its low levels can lead to a wide range of adverse health effects on people who exposed. The purpose of this study was to produce polymer /single-walled carbon nanotube hybrid nanofibers by electrospinning technique and doing plasma surface treatment and evaluating their removal efficiency of toluene from air stream.  
Material and Methods: The nanofiber layers were fabricated by electrospinning solution containing polyacrylonitrile polymer (PAN) and single-walled carbon nanotube (SWNT) with a 99: 1 ratio under following conditions: applied voltage 20 kV, distance between needle and collector: 10 cm, injection rate: 1 ml / h; needle diameter: 18 gauge and drum speed ranging from 1000 to 500 rpm. The surface of the manufactured nanofibers was treated by cold-plasma with a radio frequency power supply (13.56 MHz with a power of 20 watts), argon gas and operating pressure of 0.2 torr. Test conditions was prepared according to standard ISO 10121-1: 2014, which provides a method for testing the performance of gas-phase air filter for a variety of flat sheet media. In order to measure the concentration of toluene, the First check – handheld multi gas VOC detector equipped with a PID detector was used. The morphology characteristics of the fibers was performed using the analysis of scanning electron microscope images. Infrared spectroscopy-Fourier transform was used to identify organic compounds and functional groups in nanofibers.
Results: The results of the analysis of the images showed that the mean diameter of the fiber was 169.16 ± 7.19 nm and the mean coefficient of variation was 0.23. The uniform and bead nanofibers were obtained. The thickness, porosity and air permeability coefficient of test media was 0.15 mm, 43% and 5.75 Darcy, respectively. The mean removal efficiency of PAN / SWNT nanofiber treated with plasma was 98% and the mean pressure drop was 100 Pascal. The FTIR spectrum of the test filter media showed that the peaks appearing at certain wavelengths related to the vibration of C-H aliphatic groups of C-C and C=O bands related to PAN polymer and carbon nanotubes.
Conclusion: Removal of toluene was achieved through the fabrication of PAN/SWNT hybrid nanofibers treated with plasma. Uniform nanofibers were obtained and showed the proper removal efficiency and low pressure drop.
Razieh Janizadeh, Ali Kavanin, Mohammad Sharif Hosseini, Elham Yahyaei, Atefeh Mohammadi Nejad, Hasan Asilian Mahabadi,
Volume 11, Issue 2 (6-2021)
Abstract

Introduction: Regarding the daily growth of Volatile Organic Compounds (VOCs) application in a vast variety of industries which also contributed to their adverse effects, different methods were used for controlling their emission. One of the most effective methods for this purpose, is a combination of cold plasma and catalyst or photo catalyst. In this study, the effectiveness of the HZSM-5/ Tio2 for Toluene treatment removal was investigated
Material and Methods: HZSM-5 zeolite, and Tio2 in 3 and 8 weight percent were used for photo catalyst preparation. The TiO2 particles were coated on the zeolite by impregnation method. X-Ray Diffraction, Scanning Electron Microscope and Brunauer Emmett Teller tests were used for the identification of photo catalyst structural properties. Toluene vapors with 58±2 PPM concentrations were produced in ambient condition including the room pressure and temperature by a dynamic system and introduced to a reactor included 1 gr of the photo catalyst. Vapors were passed from the reactor continuously with a rate of 0.5 liter per minute. Removal efficiency in three different states; plasma only, plasma /HZSM-5/TiO2 3%tw, and plasma/HZSM-5/TiO2 8% tw were assessed at the voltages of 4000 to 8000.
Results: In the current study, the removal efficiency of toluene vapors were 44.9, 75.36 and 66.68 percent for plasma, plasma /HZSM-5/TiO2 3%tw and plasma/HZSM-5/TiO2 8% tw, respectively. Photo catalyst with 3 weight percent showed the best removal efficiency. In all tests, the removal efficiency increased when the voltage increased and in 7000 volts it reached the maximum level. Therefore, adding photo catalyst to the plasma caused significant improvement in removal efficiency. Also, HZSM-5/TiO2 3% tw showed the best performance for toluene vapors removal.
Conclusion: According to the current study findings, using this combination in an industrial environment can be an effective way for Toluene vapors without the need for high temperatures. This combination can be proposed for other VOCs.
Mahta Fooladi, Roxana Moogouei, Seyed Ali Jozi, Farideh Golbabaei, Golnaz Tajadod,
Volume 11, Issue 3 (9-2021)
Abstract

Introduction: Phytoremediation is one of the available techniques for removing the volatile organic compound from the air. Benzene and toluene are volatile organic compounds that exist in many occupational environments. Plants are able to reduce benzene and toluene in the air and the use of plants is a simple and consistent solution for the nature to reduce these compositions in the air and improve the air quality of work environments. The phytoremediation potential of Dannae racemosa and Hedera helix were evaluated for remediation of benzene and toluene in air.
Material and Methods: Dannae racemosa and Hedera helix  were exposed to exposed benzene(250ppm) and toluene(250ppm) each time alone in a chamber and to examine the decrease amount of benzene and toluene during 6 days. Then plants were exposed to 250ppm and 250ppm of benzene three times with a rest day and the processes of reduction were investigated.
Results: Dannae racemosa was able to remove all of benzene and toluene concentrations from the air after 6 days. Hedera helix was able to reduce all of benzene and toluene concentration from the air after 6 and 5 days, respectively. The differences in Benzene and toluene remediation were assessed between the first and the third subsequent exposure and the results showed that the reduction rate increased for Dannae racemosa.
Conclusion: It can be concluded that the Dannae racemosa and Hedera helix could be used for benzene and toluene phytoremediation.
Amir Hossein Khoshakhlagh, Farideh Golbabaei, Mojtaba Beygzadeh, Seyed Jamaleddin Shahtaheri,
Volume 11, Issue 4 (12-2021)
Abstract

Introduction: Toluene is considered as a group of chemical contaminants, causing problems for people’s health. Due to the high rate of evaporation and rapid emission in the surrounding environment, it leads to the exposure of many employees and people at risk and, subsequently, its irreparable effects on their health in different jobs. Therefore, its removal is very important. In the present study, this contaminant was removed using the copper metal-organic framework (MOF) under different operating conditions. 
Material and Methods: In this study, the copper MOF was synthesized using the one-pot and in situ method. Physical and morphological properties of the adsorbent were investigated using BET, XRD, FTIR and SEM techniques. The efficiency of the adsorbent in removing toluene from the air stream under the dynamic adsorption system was investigated by examining the effect of the variables of adsorbent mass, pollutant concentration and humidity. Isotherm, thermodynamics and kinetics equations were used to evaluate the data.
Results: The results of experiments determining the properties of the metal-organic framework showed the formation of pure Cu-BDC crystals with mean and particle size distribution of 1.95 nm. The specific surface area calculated by the BET method for the mentioned sample was 686 m2 g-1 and the total volume of structural pores was 0.335 g3 cm3. The presence of micropores increased the dynamic adsorption capacity of toluene. The findings follow the Langmuir isotherm model and the Pseudo-second order kinetic model. Based on the results of thermodynamic studies, entropy change (ΔS°) and enthalpy change (ΔH°) were equal to -0.44 kJ mol-1 K-1 and -15.67 kJ mol-1, respectively. Gibbs free energy change (ΔG°) was also calculated negatively, indicating that the adsorption process was spontaneous and exothermic. The regeneration of the adsorbent was 77% after three cycles.
Conclusion: According to the results of this study, the microporous copper MOF can be used as a result of cheapness, high access, high adsorption capacity and appropriate regeneration rate in different operating conditions for adsorption of toluene.
Zahra Alaei, Roohollah Ghasemi, Mohammad Reza Pourmand, Ali Karimi, Ensieh Masoorian, Farideh Golbabaei,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Volatile organic compounds are the most common pollutants in the air, and among them, toluene is the most common form, which is toxic resulting in liver and kidneys damages. Regarding the fact that this compound is widely used in various chemical industries, implementing an efficient method for controlling its concentration is of great importance. The comparative survey of the capability of virgin activated carbon with the one immobilized by pseudomonas putida PTCC, and also the performance of the biofiltration system involving pseudomonas putida bacteria immobilized on activated carbon for the adsorption and degradation of toluene from the air as well as regenerating the activated carbon were aimed in the present study.
Material and Methods: The microbial growth process was initiated by incubation of pre-culture in a rotary shaker, at 150rpm overnight. After 4 days, the strain pseudomonas putida, PTCC No: 1694 was immobilized on a certain amount of activated carbon. Subsequently, an airstream containing toluene was introduced into the biofilter, and the inlet and outlet concentrations of toluene were measured.
Results: The obtained results illustrated that the increase in the volume of the media and decrease in the gas flow rate significantly enhances efficiency. The great performance of the biofilter was confirmed by the high efficiency of the immobilized activated carbon which exhibited 89% yield during 14 hours. On the second cycle, the biofiltration system was able to adsorb toluene at an efficiency of 81%, while the virgin activated carbon exhibited far less efficiency with the value of 28%.
Conclusion: The provided results demonstrated the feasibility and reusability of the biofilter system for toluene removal. The proposed technique also extends the activated carbon’s capacity, which could be a potential solution to re-use the activated carbon in industrial applications.

Samaneh Khodaverdloo, Mohammad Reza Pourmand, Ensieh Masoorian, Roohollah Ghasemi, Saba Kalantari, Farideh Gholbabaie,
Volume 13, Issue 3 (9-2023)
Abstract

Introduction: Toluene is significant pollutants in the air. Long-term exposure to toluene can lead to adverse effects.  Biofiltration is one of the air pollutant control methods. In this study, Pseudomonas putida was selected as a microorganism capable of hydrocarbon degradation and its ability to biodegrade toluene in a suspension growth reactor was also investigated.
Material and Methods: Experiments were conducted in two days and in five hours. Each method consisted of three sample reactors (A, B, C) and one control reactor (D). In the first method, the amount of bacteria in the sample reactors is 0.5, 1 and 2 McFarland and the amount of toluene injection into the reactors is the same (0.5 microliters) and in the second method, the amount of toluene injection into the sample reactors is 0.5, 1 and 1.5 microliter and 1.5 microliter in the control reactor and the amount of bacteria in them was the same (1 McFarland).Toluene gas samples and carbon dioxide were periodically analyzed.
Results: In the first method of toluene decomposition, there was a significant difference between the three reactors (p-value = 0.002). The results of the second method were also significantly different between the three reactors (p-value<0.001). The decomposition of toluene in two methods also had a significant difference (p-value = 0.232). The amount of CO2 production was significantly different in the second method (p-value=0.003) and the first method (p-value<0.001), but no significant difference was observed in the comparison of the two methods (p-value=0.15).
Conclusion: Increasing bacterial in suspension growth reactor resulted in increased toluene biodegradation in shorter time while increasing toluene in suspension growth reactor may not have an additive effect on the biodegradation process.

 
Mahdi Alinia Ahandani, Saba Kalantary, Monireh Khadem, Fatemeh Jafari, Kamal Azam, Farideh Golbabaei,
Volume 13, Issue 4 (12-2023)
Abstract

Introduction: VOCs are harmful air pollutants that must be detected, monitored and eliminated. Adsorber tubes are standard tools for this task, specifically activated carbon tubes with high adsorption and selectivity. This research aims to compare the structural and functional characteristics of domestically produced activated carbon tubes with the conventional commercial ones for sampling toluene, a volatile organic compound.
Material and Methods: The characteristics of each adsorbent, such as structure, morphology, porosity, and element composition, were examined by SEM photography, BET testing, and EDAX analysis. The central composite design (CCD) method was employed to investigate the adsorption properties of the adsorbents. The input concentration and readsorption time of the samples were the variables considered in this study. Additionally, a field phase of personal air sampling was performed to evaluate the effectiveness of adsorbent tubes.
Results: SEM and BET analyses indicated that the porous structure of domestic activated carbon was comparable to the model produced by SKC. EDAX analysis detected a minor impurity (1%) in the domestic activated carbon adsorbent. The adsorption performance was significantly influenced by the variations in readsorption time and pollutant input concentration. The accuracy and precision of the performance of the domestic adsorbent tube were obtained as 90.77% and 91.76%. The field phase results demonstrated that the amount of pollutant adsorbed in the SKC-activated charcoal adsorber did not differ significantly during 0 to 30 days. However, the domestic adsorber showed a significant difference in the same period. The overall performance of the two adsorbers did not exhibit a significant difference between 0 and 30 days.
Conclusion: Despite minor structural differences, the adsorption efficiency of toluene by domestic adsorbent tubes in sampling high concentrations is very similar to its commercial type. However, it is not recommended for use in low-concentration environments (10 ppm and less).

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb