Search published articles


Showing 3 results for Tractor

, , ,
Volume 2, Issue 2 (9-2012)
Abstract

Introduction: Application of agricultural machineries such as tractor has been yielded a considerable development in different agricultural activities and productions. However, noticeable health problems such as noise pollution impact the users of these off-road vehicles. The purpose of this study was to determine the noise level induced by agricultural tractors and to evaluate the driver’s noise exposure level.

.

Material and Method: The sound pressure levels of three brands of tractor include John Deere, Ferguson and Romani were measured by sound level meter model Tes-1358. The characteristics of place for measuring tractors noise pollution were determined based on the ISO standard No 7216, 5131. The acquired data was analyzed using spss16 software.

.

Result: The results showed that the highest and the lowest noise level around the tractors were 83.8 dB (A) and 73.9 dB (A) for the John Deere and Romani, respectively. The effect of different transmission gears on the noise level of tractors was not statistically significant Pvalue>0.05. While, the effect of the tractor engine speeds on the noise level was statistically significant Pvalue<0.01. The exposure time of the most of drivers was frequently about 8 hour or more In this regards, the exposure levels of the tractor’s drivers to noise measured between 85-90 dB (A) were higher than the Iranian occupational exposure limit (85 dB (A)).Moreover, mean noise reduction rate of exsisting room which was used upon the typical tractor’s body was 9.5 dB in one octave band.

.

Conclusion: Application of standard cockpit and expansion mufflers can effectively reduce noise pollution emission and driver’s occupational exposure. Moreover, regular preventive maintenance and effective hearing conservation program including annual audiometry, hearing protection device, occupational health training for drivers must be implemented.


P. Nassiri, I. Ali Mohammadi, M. H. Beheshti, K. Azam,
Volume 3, Issue 2 (8-2013)
Abstract

Introduction: The power tiller is a multipurpose hand tractor designed primarily for rotary tilling and other farm operations. Vibration, transmitted from the handles of the tiller to the operators’ body, causes many injuries such as, pain, musculoskeletal disorders and white finger syndrome. The aim of this study was to evaluate the hand-arm vibration exposure in the operators of tiller model HT900, as the most frequently used model of tillers.

.

Material and Method: In this study, 40 operators tiller of model HT900 in the city of Kashmar, Khorasan Razavi were examined. Hand-arm vibration measurement was done according to ISO 5349-1 and ISO 5349-2 in three different modes including, static and neutral (mode), transition to the ground mode and plowing the land mode in different gears. In order to measure the vibrations, human response vibration meter of B and K model 2512 was utilized.

.

Result: Results of the present study indicated that in all measured situations, exposure to hand arm vibration was higher than the standard limit suggested by Iranian occupational health committee and there was risk of vibration-induced disorders. The maximum exposure to vibration is in plowing ground. Exposure to hand arm vibration in three modes of plowing, transmission and natural, were respectively 16.95, 14.16 and 8.65 meters per second squared. Additionally, in all situations, vibration exposure was highest in the X-axis in comparison with Z- and Y-axes.

.

Conclusion: This study emphasizes on the need to provide intervention and controlling and managing strategies in order to eliminate or reduce vibration transmitted from tiller to operators hand and arm and also prevent to serious problems including neurovascular disorders, discomfort and white finger syndrome. Meanwhile, more studies are necessary to identify the sources of vibration on different models of tiller.


P. Nassiri, I. Ali Mohammadi, M. H. Beheshti, K. Azam, ,
Volume 3, Issue 3 (12-2013)
Abstract

Introduction: Tractor drivers are continuously exposed to whole body vibration during driving that, this may cause disorders in the system of musculoskeletal, nervous, circulatory and occupational diseases. The aim of this study was to evaluate exposed to whole body vibration among tractor driver.

.

Material and Method: In this study, whole-body vibration parameters such as root mean square (rms) of acceleration , total equivalent acceleration, vibration dose value (VDV) and crest factor (CF) were separately compared in three directions (x, y, and z) , in 3 Massey Ferguson Model 165 Tractor it was done during 3 different modes of transport (without trailer, with empty trailer and with a trailer load of soil) , plowing the land and loading trailer in working conditions with various gear according to the guidelines of ISO 2631 standard.

.

Result: The results showed that in all measuring points, exposure to whole body vibration was higher than permissible level and the risks of disorders exist. Exposure to vibration were as with empty trailer (43.11m/s2). The maximum of crest factor was obtained for transportation mode of empty trailer with 3 gear (10.7), then plowing (7.35) and loading soil(6.50). The maximum of vibration dose value was eventuated for transportation mode with empty trailer with 4 gear (189.92 m/s1.75) and 3 gear (108.15m/s1.75). In all measuring modes exposure with vibration in Y direction was greater than X and Z axes.

.

Conclusion: This study shows that the need to provide intervention , controlling and managing measures to eliminate or reduce exposure to whole body vibration among tractor drivers its necessary. And, preventing main disorder Including musculoskeletal disorders, discomfort and early fatigue is of circular importance. More studies are also necessary to identify the sources of vibration among various of tractors.



Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb