Search published articles


Showing 3 results for White Noise

Monireh Khadem, Elham Kazemi Rad, Mohammad Reza Monazzam Esmaeilpoor, Maryam Mirzaei Hotkani, Sajjad Mozaffari, Amir Abbasi Garmaroudi,
Volume 12, Issue 1 (3-2022)
Abstract

Introduction: One of the most important complications of exposure to noises is changes in the gene expression patterns. Irreversible damage to the inner ear, such as noise-induced hearing loss (NIHL), is caused by tissue damage and changes in the gene expressions in the auditory system. Changes in the GJB2 gene expression pattern lead to autosomal deafness at different loci. The present study aims to evaluate the GJB2 gene expression in cochlear tissue exposed to white noise.
Material and Methods: In this study, ten male Westar rats were divided into two experimental (W1, W2) groups of six rats and a control (normal) group of four rats. Two experimental groups were exposed to constant white noise in the frequency range of 100-20000 Hz and the sound pressure level of 118-120 dB. In order to study the histology and gene expression, after a cochlea biopsy, the histological tests, RNA extraction, cDNA synthesis, and qRT-PCR analysis were performed.
Results: The results showed that the transcript level of GJB2 was significantly decreased in both experimental groups W1 and W2 by 0.02 and 0.12-fold, respectively (p <0.05). Also, the results of the histological study showed that cochlear tissue was more seriously damaged in the W1 group than W2.
Conclusion: It can be concluded that a significant reduction in the GJB2 gene expression and irrevocable damage to auditory nerve ganglion and Reissner membrane (vestibular membrane) caused changes in the gene expression patterns in cochlear tissue and developed the risk of non-syndromic sensorineural hearing.
Shoaib Ghasemi, Fatemeh Fasih-Ramandi, Mohammad Reza Monazzam-Esmaeelpour, Soheila Khodakarim Ardakani,
Volume 12, Issue 3 (9-2022)
Abstract

Introduction: The study of noise has always been of interest to occupational health professionals as a harmful physical factor in the workplace. However, the psychological and psychoacoustic aspects of noise in the workplace have been less studied. This study has dealt with different colors of noise and their applications in psychoacoustics.
Material and Methods: This review study was conducted by searching the databases of Google Scholar, ProQuest, Science Direct, PubMed, and Scopus to extract the articles related to the research subject within a 50-year interval from 1970 to 2020.
Results: Based on the results of the present study, colored noises and white noise seem to have the potential to be used as acoustic stimuli to improve the sleep of employees, especially shift workers, to improve memory and attention, especially in jobs that require high care and attention. Colored noise and white noise have potential applications to improve cognitive function in different occupations to reduce the activity of the sympathetic nervous system and anxiety and stress, especially in jobs with high job stress. Also, these noises are helpful for people’s privacy, especially in the open workplace, for noise masking and noise control purposes, as well as for medicine and treatment of disorders such as tinnitus, ADHD, and hyperacusis.
Conclusion: Paying attention to the colors of noise and their psychoacoustic impacts shows us that the noise impacts are not limited to their undesirable and damaging effects. Instead, their positive and applied aspects should also note. Familiarity with such aspects and their introduction can identify the existing information gaps in this field and pave the way to fill them.
Vida Rezaei-Hachesu, Hassan Haddadzade Niri, Saeid Farahani, Mohammad Reza Monazzam Esmaeelpour,
Volume 13, Issue 2 (6-2023)
Abstract

Introduction: Colored noises with acoustic and psychoacoustic characteristics have several biological effects on human or animal health. While studies on auditory effects focus on noise’s physical aspects, its psychoacoustic aspects can also result in health and safety risks. Therefore, this study aims to investigate frequency-based damages due to exposure to colored noise in an animal model.
Material and Methods: Twenty-four male Wistar rats were randomly divided into four groups (6 in each group). The groups included the control (no exposure) and three exposure groups (white, pink, and violet). The rats were exposed to 110 dB SPL for 4 hr/day for 14 consecutive days. Auditory brainstem responses (ABR) with click and tone-burst stimuli were recorded one day before (baseline), 7, and 14 days after exposure. Statistical analyses were conducted using ANOVA and repeated measures ANOVA.
Results: There was a statistically significant increase in ABR threshold values in exposure groups (p<0.05). Hearing threshold shifts in the white noise group showed a homogeneous pattern, violet noise showed an increasing pattern, and pink noise showed a decreasing pattern in low frequencies and a homogeneous pattern with increasing frequency. The highest shift in hearing threshold was observed in exposure groups from day 0 to 14. Additionally, the shift in hearing threshold in the second week was less than in the first one.
Conclusion: The current study observed that noise’s power spectral density affected hair cells’ damage severity. Accordingly, pink noise causes less damage to the cochlea compared to white and violet. Over time after noise exposure, cochlear pathogenesis gradually decreases and hair cell lesions become stable.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb