Search published articles


Showing 4 results for Biodegradation

F. Golbabaei, A. Karimi, M. Neghab, M. R. Pourmand, R. Bakhtiari, K. Mohammad,
Volume 3, Issue 2 (8-2013)
Abstract

Introduction: Human and environment exposed to harmful factors, as the result of industrial pollutants. Volatile organic compounds (VOCs) play important role in photochemical reactions in troposphere layer of atmosphere and results in production of ozone and photochemical oxidants.

.

Material and Method: In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing xylene. In the next step, the bioreactor incubated with microbial consortiums with ratio of 1 to 3. The performance of bioreactor in treatment of xylene vapors in presence of 10% silicone oil, as an organic phase was assessed in concentrations ranging from 551 mg/m3 to 3330 mg/m3 for 432 hours.

.

Result: The results of xylene biodegradation showed that removal efficiency up to the concentrations of 2756 mg/m3 was 82 percent. Moreover, adding 10% silicone oil increased removal efficiency of BTX by 85.7% in comparison with context without organic phase. The microbiological experiments on the bioreactor media showed that three spices of Pseudomonas putida, Chryseobacterium and Ralstonia pickettii were found, in the presence of xylene.

 .

Conclusion: Overall, the results of the present research revealed that application of two phase stirred tank bioreactors (TPPBs) for xylene from contaminated treatment of streams was successful.


A. Karimi, F. Golbabaei, M. Neghab, M. R. Pourmand, R. Bakhtiari, K. Mohammad,
Volume 3, Issue 4 (2-2014)
Abstract

Introduction: In real Conditions, pollution emission are mostly released as mixed components rather than a single pure emission of the chemicals. In this study, a miniature stirred tank bioreactor was optimized for treatment of waste gas containing BTX (benzene, toluene and xylene).

.

Material and Method: The sludge of an oil refinery was sampled based on the assumption that it contains BTX-degrading microorganisms and used as microbial consortium. Also, silicone oil was added to improve removal efficiency. The operational parameters of the bioreactor were optimized during the study.

.

Result: The removal efficiency and elimination capacity of benzene, toluene and xylene vapors simultaneously in the presence of 10% silicone oil as an organic phase showed increasing trend up to the concentrations of 1730 mg/m3, 1710 mg/m3 and 1380 mg/m3, respectively. In these concentrations the removal efficiency and elimination capacity of benzene were 100% and 59 g/m3/h, toluene 100% and 58 g/m3/h and xylene 91% and 42 g/m3/h, respectively. The total removal efficiency and elimination capacity for BTX were 91 to 100% and 159 g/m3/h, respectively.

.

Conclusion: It was shown that presence of 10% silicone oil increased 44.5% in total removal efficiency of BTX. The microbiological experiments on the bioreactor media showed that three spices of Pseudomonas putida, Chryseobacterium and Ralstonia pickettii can be found, when BTX ware treated. This work revealed that two phase partition bioreactors (TPPBs) can be successful method for the treatment of streams contaminated with BTX.


Zahra Alaei, Roohollah Ghasemi, Mohammad Reza Pourmand, Ali Karimi, Ensieh Masoorian, Farideh Golbabaei,
Volume 12, Issue 2 (6-2022)
Abstract

Introduction: Volatile organic compounds are the most common pollutants in the air, and among them, toluene is the most common form, which is toxic resulting in liver and kidneys damages. Regarding the fact that this compound is widely used in various chemical industries, implementing an efficient method for controlling its concentration is of great importance. The comparative survey of the capability of virgin activated carbon with the one immobilized by pseudomonas putida PTCC, and also the performance of the biofiltration system involving pseudomonas putida bacteria immobilized on activated carbon for the adsorption and degradation of toluene from the air as well as regenerating the activated carbon were aimed in the present study.
Material and Methods: The microbial growth process was initiated by incubation of pre-culture in a rotary shaker, at 150rpm overnight. After 4 days, the strain pseudomonas putida, PTCC No: 1694 was immobilized on a certain amount of activated carbon. Subsequently, an airstream containing toluene was introduced into the biofilter, and the inlet and outlet concentrations of toluene were measured.
Results: The obtained results illustrated that the increase in the volume of the media and decrease in the gas flow rate significantly enhances efficiency. The great performance of the biofilter was confirmed by the high efficiency of the immobilized activated carbon which exhibited 89% yield during 14 hours. On the second cycle, the biofiltration system was able to adsorb toluene at an efficiency of 81%, while the virgin activated carbon exhibited far less efficiency with the value of 28%.
Conclusion: The provided results demonstrated the feasibility and reusability of the biofilter system for toluene removal. The proposed technique also extends the activated carbon’s capacity, which could be a potential solution to re-use the activated carbon in industrial applications.

Samaneh Khodaverdloo, Mohammad Reza Pourmand, Ensieh Masoorian, Roohollah Ghasemi, Saba Kalantari, Farideh Gholbabaie,
Volume 13, Issue 3 (9-2023)
Abstract

Introduction: Toluene is significant pollutants in the air. Long-term exposure to toluene can lead to adverse effects.  Biofiltration is one of the air pollutant control methods. In this study, Pseudomonas putida was selected as a microorganism capable of hydrocarbon degradation and its ability to biodegrade toluene in a suspension growth reactor was also investigated.
Material and Methods: Experiments were conducted in two days and in five hours. Each method consisted of three sample reactors (A, B, C) and one control reactor (D). In the first method, the amount of bacteria in the sample reactors is 0.5, 1 and 2 McFarland and the amount of toluene injection into the reactors is the same (0.5 microliters) and in the second method, the amount of toluene injection into the sample reactors is 0.5, 1 and 1.5 microliter and 1.5 microliter in the control reactor and the amount of bacteria in them was the same (1 McFarland).Toluene gas samples and carbon dioxide were periodically analyzed.
Results: In the first method of toluene decomposition, there was a significant difference between the three reactors (p-value = 0.002). The results of the second method were also significantly different between the three reactors (p-value<0.001). The decomposition of toluene in two methods also had a significant difference (p-value = 0.232). The amount of CO2 production was significantly different in the second method (p-value=0.003) and the first method (p-value<0.001), but no significant difference was observed in the comparison of the two methods (p-value=0.15).
Conclusion: Increasing bacterial in suspension growth reactor resulted in increased toluene biodegradation in shorter time while increasing toluene in suspension growth reactor may not have an additive effect on the biodegradation process.

 

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb