Showing 3 results for Dam
A. Maleki, E. Darvishi, A. Moradi,
Volume 4, Issue 4 (1-2015)
Abstract
Introduction: Safety culture is considered as the core of an organization’s safety management system. Safety culture is an organization ability to achieve higher standards of safety. The aim of this study was to investigate safety culture and its influencing factors and relation to the accident in a dam construction project.
.
Material and Method: This cross-sectional study was conducted among 130 workers at a dam construction project. A standardized questionnaire included 59 questions was used to determine the level of safety culture. The accidents occurred in the project during the year were collected based on demographic characteristics. The collected data were analyzed using SPSS version 19.
.
Result: The mean age of the subjects, their work experience and score of safety culture were 35.05, 7.5 Years and 183.2, respectively. Twenty seven accidents were recorded during the year in project. The most common cause of the accidents was indiscretions (33.3%). There was a statistically significant correlation between safety culture to occurred accidents and history of accident (P<0.05). The percentage of a positive safety culture of workers with an experience of accident (71.8%) was more than that of those with no experience of accident (45.1%). There was not a statistically significant correlation between safety culture and age, work experience, education, and marital status.
.
Conclusion: It seems that safety culture on the project is influenced by the experience of accident and also it was strongly significant with the occurred accidents. Consequently, in order to create a positive safety culture in the workplace many factors including safety education program, work experience and accidents analysis should be considered.
Maryam Babaei, Sahar Rezaian, Seyed Ali Jozi,
Volume 11, Issue 3 (9-2021)
Abstract
Introduction: Comprehensive and reliable performance evaluation of organizations has always been one of the main concerns of stakeholders and managers of organizations. Performance evaluation can raise awareness of the progress made in improving the performance of any organizations, especially in the field of health, safety, and environment (HSE) and thus, create the necessary motivation and opportunity to improve the quality of HSE performance. National quality awards and excellence approaches emphasizes the fact that survival in global competition requires improving the performance of organizations on a global scale. The EFQM enterprise excellence model, as a comprehensive tool with a comprehensive approach to all aspects of organizations, helps managers to understand their organization well.
Material and Methods: This study was conducted in Tehran Industrial Group in 2018, during which the performance of this industrial group in the design and construction of one of the dams in the south of the country was evaluated and analyzed. The data collection tool was a standard self-assessment questionnaire based on the EFQM enterprise excellence model, the validity and reliability of which was tested by Cronbach’s alpha coefficient at 0.971.
Results: In terms of “enablers” criteria, the leadership dimension, with a score of 76.36, obtained the best percentage of scores, while the processes criterion with a score of 72.04 had the lowest percentage of scores. This dimension, along with staff, resources, and partnership dimensions, needs to be improved. In the field of “results” criteria, the key performance results with 79.77 points had the best percentage and the customer result dimension with a score of 69.13 had the lowest, indicating that the organization should improve these sectors.
Conclusion: The results indicated the suitable status of the organization in terms of the criteria of excellence model. The results of this model are generally used for systematic analysis of the organization in order to achieve a comprehensive view of the organization and its challenges.
Peymaneh Habibi, Seyed Nasser Ostad, Ahad Heydari, Mohammad Reza Monazzam, Abbas Rahimi Foroushani, Mahmoud Ghazi-Khansari, Farideh Golbabaei,
Volume 12, Issue 4 (12-2022)
Abstract
Introduction: Climate change and hot processes in the workplaces has led to an increase in the effects of heat stress on employed people, which has become a major concern, especially in tropical and subtropical countries. Early detection of biomarkers in induction of heat stress-related DNA damage can be used in the identification and evaluation of health and safety, including occupational health professionals, as well as to prevent serious diseases caused by heat stress in various occupations with the nature of hot processes or to help different warm seasons of the year. Therefore, this review study was conducted to identify diagnostic biomarkers heat stress induced- DNA damage in occupational exposure.
Material and Methods: Databases such as PubMed, Scopus, Google Scholar, and Web of Science were systematically searched to meet the study’s goals. Moreover, references to relevant publications were examined. Finally, suitable articles were selected and analyzed using the inclusion (studies on different occupations, different biomarkers in hot work environments, all articles published without time limit until the end of April 2022 , and English and Persian language) and exclusion criteria.
Results: The results of search in databases showed that 9234 articles were found in the initial search. After removing duplicate and unrelated articles, 2209 eligible articles were selected. Based on abstract full-text screening, 7166 studies were excluded, and based on abstract full-text screening, 21 studies were not accessible. Finally, seven articles were selected to be reviewed. The evidence showed that diagnostic biomarkers included the measurement of 8-hydroxy-2-deoxyguanosine (8-OHdG), micronuclei semen quality, heat shock proteins (HSP70), and leukocytes were extracted to heat stress induced- DNA damage in occupational exposure.
Conclusion: Based on a review of studies, biomarkers identified are suitable for heat stress induced- DNA damage as a result of occupational exposure to extremely high heat climate conditions. Understanding and identifying appropriate biomarkers in inducing DNA damage can help health and safety professionals determine the amount and magnitude of heat stress responses in occupational exposure to different temperatures and take appropriate measures and interventions to control and reduce the hazard effects of thermal stress. This study can also be considered as a preliminary study for research in the future.