Search published articles


Showing 7 results for Extraction

Maryam Ramin Sabet, Mehran Pourhossein, Monireh Khadem, Fariborz Omidi, Farideh Golbabaei, Seyed Jamaleddin Shahtaheri,
Volume 8, Issue 4 (12-2018)
Abstract

Introduction: Measurement of pesticides in biological matrices is become a serious challenge for researchers due to their very low concentration in different matrices. The aim of this study was to develop a new sample preparation method with high accuracy and validity and short retention time for determination of diazinon.
Material and Method: Dispersive liquid-liquid micro-extraction technique coupled with high performance liquid chromatography equipped with ultra violet detector was developed for trace extraction and determination of diazinon pesticide in human urine samples. One variable at a time method was used to optimize parameters affecting the diazinon extraction. Different parameters such as extraction solvent, disperser solvent, and volume of the extraction solvent, volume of the disperser solvent, centrifugation time and speed, salt addition, and sample pH were studied and optimized.
Result: Findings showed that optimal levels of these variables for diazinon pesticide were 150 μl of carbon tetrachloride as extraction solvent, 1.5 ml of methanol as dispersive solvent, pH of 6, 5 minutes centrifuge time at speed of 4000 rpm , 0% (w/v) salt addition. Correlation coefficient was 0.9965 indicating the linearity of a wide range of concentrations of the toxin. LOD and LOQ was calculated less than 0.7 and 5 µg L-1 respectively. The relative standard deviation for six replicate experiments in intra-day and inter-day at tree selected concentrations (50, 200 and 1000 µg L-1) was less than 4% that indicates the accuracy and precision of the optimized method. Enrichment factor and extraction recovery for diazinon were 245 and 99% respectively.
Conclusion: According to the results, dispersive liquid-liquid micro-extraction procedure was successfully developed for the extraction of diazinon from human urine samples. Compared to other extraction techniques, the proposed procedure had some advantages such as shorter extraction time, better reproducibility, and higher enrichment factor.

Volume 9, Issue 2 (6-2019)
Abstract

Introduction: Along with the extensive production and use of various pesticides for controlling pests and enhancing the production of agricultural crops, there is a growing concern about the adverse effects of these toxic materials on human health. Therefore, the development of sensitive, selective, and accurate methods for continuous assessment of pesticides concentration in occupational and environmental fields and comparing them with national and international standards is of great importance. This study was aimed at synthesis and application of molecularly imprinted polymer as a selective sorbent for residue determination of two pyrethroid isomers in biological samples.  
Material and Methods: The MIP particles were prepared by a non-covalent approach using permethrin as a template, chloroform as progen solvent, methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as cross-linker, at 55 °C for 18 hours in an oil bath. Field emission scanning electron microscopy was used to investigate the morphology and size of polymer particles. Afterward, the critical parameters, which could affect the recognition properties of synthesized MIP, were investigated and optimized under the selected operational ranges for the highest adsorption and recycling yield in solid-phase extraction of permethrin in biological samples
Results: using precipitation polymerization technique, uniform and spherical particles with the nano-ranged diameter (less than 21.2 nanometers) were obtained. Under the optimized condition, the designed molecularly imprinted solid-phase extraction (MISPE) technique exhibited great potential for the extraction of pesticide isomers in the real sample. More than 93 % of the recovery obtained from spiked urine samples. The linear calibration curve was obtained from 20-120 μg.L-1 (R2=0.99) and the detection limit was less than 6 ppb for both isomers. The presence of interferences had no effect on the selectivity of the method up to 100-fold.
Conclusion: employing the molecular imprinted solid-phase extraction method along with the high-performance liquid chromatography technique resulted in a selective and sensitive approach, suitable for quantitative monitoring of the desired pesticide in complex biological samples.
Omid Reza Heravizadeh, Monireh Khadem, Ramin Nabizadeh, Seyed Jamaleddin Shahtaheri,
Volume 9, Issue 3 (9-2019)
Abstract

Introduction: Along with the extensive production and use of various pesticides for controlling pests and enhancing the production of agricultural crops, there is a growing concern about the adverse effects of these toxic materials on human health. Therefore, the development of sensitive, selective, and accurate methods for continuous assessment of pesticides concentration in occupational and environmental fields and comparing them with national and international standards is of great importance. This study was aimed at synthesis and application of molecularly imprinted polymer as a selective sorbent for residue determination of two pyrethroid isomers in biological samples.  
Material and Methods: The MIP particles were prepared by a non-covalent approach using permethrin as a template, chloroform as progen solvent, methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as cross-linker, at 55 °C for 18 hours in an oil bath. Field emission scanning electron microscopy was used to investigate the morphology and size of polymer particles. Afterward, the critical parameters, which could affect the recognition properties of synthesized MIP, were investigated and optimized under the selected operational ranges for the highest adsorption and recycling yield in solid-phase extraction of permethrin in biological samples
Results: using precipitation polymerization technique, uniform and spherical particles with the nano-ranged diameter (less than 21.2 nanometers) were obtained. Under the optimized condition, the designed molecularly imprinted solid-phase extraction (MISPE) technique exhibited great potential for the extraction of pesticide isomers in the real sample. More than 93 % of the recovery obtained from spiked urine samples. The linear calibration curve was obtained from 20-120 μg.L-1 (R2=0.99) and the detection limit was less than 6 ppb for both isomers. The presence of interferences had no effect on the selectivity of the method up to 100-fold.
Conclusion: employing the molecular imprinted solid-phase extraction method along with the high-performance liquid chromatography technique resulted in a selective and sensitive approach, suitable for quantitative monitoring of the desired pesticide in complex biological samples.
Somayeh Kamgou, Khosrou Abdi, Monire Khadem, Mahmoud Heidari, Omid Heravizadeh, Ali Daneyali, Seyed Jamaloddin Shahtaheri,
Volume 10, Issue 1 (3-2020)
Abstract

Introduction: Todays, exposure to heavy metals is happened by being produced in various environmental, industrial processes. The production of metals finally results in air pollution as well as contamination in the food chain. There are harmful effects of heavy metals such as cadmium on different organs. Therefore, this study aimed to identify and quantify cadmium in biological samples using DLLME SFOD method.
Materials and Methods: Optimization of the underlying variables played a key role in the process including sample PH, chelator, extractor and disperser solvents, ion concentration, time and rate of centrifugation and extraction time. It was done by employing central composite design (CCD) of the response surface methodology. In the process of optimization, after setting a certain pH, Specific salt concentration and ditizon added to form a complex between the metal and the chelator. A mixture of extraction and dispersant solvents added to the sample. The organic and aqueous phase separations when centrifugation and vortex carried out, the sample vial transferred to a cold ice bath and the organic solvent floated on the aqueous solvent .The organic portion containing the analyte was injected into the analyzer apparatus.
Results. The results showed that variables such as sample PH, complexing solvent, extraction solvent, centrifugation effect and extraction time play an important role in the extraction of cadmium metal ion from biological samples. The optimized method with a minimum detection limit (LOD) of 2 μg / l and a concentration factor (EF) of 50 and a relative recovery (RR) of 1.06.26 used to extract cadmium from urine samples.
Conclusion. According to the pre-test results and the optimization process, they showed that in the three factors of sample PH, salt concentration and extraction solvent volume that play a more effective role in cadmium extraction by DLLME-SFOD method.
Seyedeh Maryam Taheri, Monireh Khadem, Fariborz Omidi, Alirea Sedighi, , Seyed Jamaleddin Shahtaheri,
Volume 11, Issue 1 (3-2021)
Abstract

Introduction: Pesticides are among the broadest chemical compounds used in the world and are also considered as the most dangerous compounds for living organisms. Although pesticides have significant impact on improving agricultural and food products, the processes of their production, formulation, storage, transportation, and marketing as well as the extensive use of these materials lead to occupational exposure, environmental pollution, and the presence of their residues in foodstuffs. Bentazon as a herbicide is considered as one of the most common pesticides used in agriculture and horticulture. Its effects on human health are widespread and of concern. Occupational and environmental exposure assessment of this compound is, therefore, considered necessary by conducting accurate and valid methods. The purpose of the present study was to synthesize a molecular imprinted polymer (MIP) as a specific adsorbent in the preparation process of bentazon for its selective analysis in biological matrices.
Material and Methods: For synthesis, a precipitation polymerization method was used. This method has been used to prepare particle size distribution and shape appropriately. By applying the aforementioned method, nano particle size is obtained within the sub-micron and nano range. So, crushing and sieving of the sorbent is not necessary. The MIP was synthesized with 1: 4: 30 ratio of template molecule (bentazone): functional monomer (methacrylic acid): cross-linking monomer (ethylene glycol di methacrylate), respectively. Due to particle size and high porosity, the sorption and recovery of template compound was performed faster and with higher efficiency. Some variables affecting the efficiency of MIP for sorption and desorption of analyte were investigated and optimized. They included pH of solution, MIP amount (mg), and sonication time (min) in the sorption step and volume of eluent (ml), sonication time (s), and acid percentage in the desorption step.
Results: The optimum levels of factors for the proposed method were pH of solution: 2، sonication time for sorption 7.3 min, polymer amount of 30.814 mg, acid percentage 1.1, and sonication time for desorption 165 s. According to the obtained results, the interfering factors in the matrix have no significant effect on the determination of analyte. The limit of detection (LOD) and relative standard deviation (RSD) of the optimized method were 0.79.ppb and 2.8931 %, respectively.
Conclusion: The results of this study indicated that the proposed method can be used to extract the bentazon herbicide from complex matrices such as urine samples with high efficiency and selectivity.
Meghdad Kazemi, Vida Rezaei Hachesu, Rajabali Hokmabadi, Seyed Jamaleddin Shahtaheri,
Volume 11, Issue 1 (3-2021)
Abstract

Introduction: Perpetration of samples is one of the most important stages needed for trace residue analysis of biological specimens when human exposure assessment is required. The samples preparation process makes the analyte get more purified and enriched as well as more compatible to the analysis instrument systems. The present study has concentrated on a systematic review of different articles published regarding the sample preparation methodologies of human biological samples.
Material and Methods: In this systematic review, all articles related to the development of sample preparation for trace residue analysis of heavy metals in occupational biological samples published in English during 2009-2019, were considered. To meet the desired objective of the current study and facilitate the  related articles on physiochemical sample preparation methods accessibility combined keywords of Mesh and non-Mesh, without any limitation in the type of studies, the Pubmed, Web of Science, and Scopus were considered to be searched. Noteworthy, in this study, only the articles related to the workers’ biological samples were reviewed.
Results: Based on the obtained results, after reviewing of the keywords trough websites, 2964 articles were identified. Then, the redundant papers were removed and59 articles were remained, based on their titles and abstracts,. After detailed review of selected articles, regarding the study criteria, 8 articles were selected for the final systematic review.  Five articles out of 8, (62.5%) were allocated to the development of sample preparation for mercury in biological samples. It is worth mentioning that the majority of biological samples were regarded to the urine samples (75%) in the current study. Based on the obtained results, Solid Phase Extraction (SPE), applied in 37.5% of studies, was a popular method used in sample preparation.
Conclusion: The development of sample preparation approaches indicates a great promise for specified methods with low costs and less extraction time when separating different heavy metals from complex matrices. These sample preparation and preconcentration techniques ease the analyses processes and provide the quantitative recoveries, higher sensitivity, and lower detection limits.
Nematullah Kurd, Abdulrahman Bahrami, Abbas Afkhami, Farshid Ghorbani Shahna, Mohammad Javad Assari, Maryam Farhadian,
Volume 13, Issue 3 (9-2023)
Abstract

Introduction: Toluene, benzene, xylene, and ethylbenzene (BTEX) belong to the class of monocyclic aromatic hydrocarbons and are identified as toxic volatile compounds due to their harmful properties. The reliable biomarkers for occupational exposure to these toxic compounds are hippuric acid (HA), trans,trans-muconic acid (tt-MA), mandelic acid (MA), and methylhippuric acid (MHA), which correlate with toluene, benzene, ethylbenzene, and xylene, respectively.
Material and Methods: A novel magnetized imine-linked covalent organic framework (Fe3O4@TFPA-Bd) was synthesized, marking its inaugural use as a sorbent in microextraction by packed sorbent (MEPS). The synthesis of Fe3O4@TFPA-Bd was executed in a straightforward and efficient manner, using Fe3O4 nanoparticles as the magnetic core and benzidine (Bd) and Tris (4-formyl phenyl) amine (TFPA) as the structural building blocks. This newly produced sorbent was tested for the microextraction of hippuric acid (HA), mandelic acid (MA), trans, trans-muconic acid (tt-MA), and m-methyl hippuric acid (m-MHA) from urine samples, which were then analyzed using high-performance liquid chromatography (HPLC). In order to optimize the extraction performance, parameters like sample volume, elution volume, extraction cycles, pH, and sample solution temperature were thoroughly adjusted. The synthesized adsorbent underwent thorough characterization via scanning and transmission electron microscopy (SEM and TEM), Fourier transforms infrared spectrometer (FTIR), and X-ray diffraction (XRD).
Results: The developed method showcased promising attributes: low detection limits (0.02 µg/ml for tt-MA, S/N=3), low quantification limits (0.06 µg/ml for tt-MA, S/N=10), a solid linear range (0.5-320 µg/ml for MA, R > 0.99), and commendable intra- and inter-day precision (2.4%-4.3% and 3.1%-7.8%, respectively) for volatile organic compound (VOC) biomarkers. Furthermore, the method demonstrated recoveries in the 81-87.5% range for spiked samples, indicating its practicality and effectiveness.
Conclusion: The developed procedure was suitable for the determination of BTEX biomarkers from urine samples and can be an alternative to previous methods.

Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb