Volume 11, Issue 3 (9-2017)                   payavard 2017, 11(3): 287-296 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mazaheri S, Ashoori M, Bechari Z. A Model to Predict Heart Disease Treatment Using Data Mining. payavard 2017; 11 (3) :287-296
URL: http://payavard.tums.ac.ir/article-1-6285-en.html
1- Master of Science in Computer Engineering - Software, The Health Insurance Office of Sistan & Balouchestan Province, Iran Health Insurance Organization, Zahedan, Iran , sajad.mazaheri@gmail.com
2- Instructor, Information Technology Department, Higher Educational Complex of Saravan, Saravan, Iran
3- Bachelor of Science in Nursing, The Health Insurance Office of Sistan & Balouchestan Province, Iran Health Insurance Organization, Zahedan, Iran
Abstract:   (7226 Views)
Background and Aim: Nowadays heart disease is very common and is a major cause of mortality. Proper and early diagnosis of this disease is very important. Diagnostic methods and treatments of the disease are so expensive and have many side effects. Therefore, researchers are looking for cheaper ways to diagnose it with high precision. This study aimed to identify a model for the treatment of heart disease.
Materials and Methods: In this descriptive cross-sectional study, the sampling method was census. The sample consisted of data from Khatam and Ali Ibn Abi Talib Hospitals in Zahedan. The data were developed as an Excel file, and Clementine12.0 software was used for data analysis. In the present study, C5.0, C & R Tree, CHAID, and QUEST algorithms and artificial neural network were carried out on the collected data. 
Results: The accuracy of 76.04 by C & R algorithm indicates the better performance of Decision Tree Algorithms than that of the Neural Network. 
Conclusion: This study aimed to provide a model for the prediction of a suitable heart disease treatment to reduce treatment costs and provide better quality of services for physicians. Due to considerable implementation risks of invasive diagnostic procedures such as angiography and also obtaining successful experiences of data analysis in medicine, this study has presented a model based on data analysis techniques. The improvable point of this model is the provision of a decision support system to help physicians to increase the accuracy of diagnosis in the treatment of diseases. 
Full-Text [PDF 514 kb]   (10964 Downloads)    
Type of Study: Original Research | Subject: Health Information Technology
ePublished: 1399/07/23

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb