Search published articles


Showing 1 results for khasha

Roghaye Khasha, Mohammad Mahdi Sepehri, Nasrin Taherkhani,
Volume 14, Issue 3 (Aug & Sep 2020)
Abstract

Background and Aim: Asthma is a common and chronic disease of respiratory tracts. The best way to treat Asthma is to control it. Experts of this field suggest the continues monitoring on Asthma symptoms and adjustment of self-care plan with offering the preventive treatment program to have desired control over Asthma. Presenting these plans by the physician is set based on the control level in which the patient is. Therefore, successful recognition and classification of the disease control level can play an important role in presenting the treatment program to the patient and improves the self-care and strengthens the early interventions to alleviate the Asthma symptoms.  
Materials and Methods: Based on this objective, we collected the data of 96 Asthma patients within a 9-month period from a specialized hospital for pulmonary diseases in Tehran. Then we classified the Asthma control level by fuzzy clustering and different types of data mining method within a multivariate dataset with the multi-class response variable.
Results: Our best model resulting from the balancing operations and feature selection on data have yielded the accuracy of 88%.
Conclusion: Our proposed model can be applied in electronic Asthma self-care systems to support the decision in real time and personalized warnings on the possible deterioration of Asthma control. Such tools can centralize the Asthma treatment from the current reactive care models into a preventive approach in which the physician’s decisions and therapeutic actions are resulting from the personal patterns of chronic Asthma control and prevention of acute Asthma.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb