Search published articles


Showing 2 results for Artificial Neural Network

Azita Yazdani, Ali Asghar Safaei, Reza Safdari, Maryam Zahmatkeshan,
Volume 13, Issue 3 (9-2019)
Abstract

Background and Aim: Breast cancer is the most common type of cancer and the main cause of death from cancer in women worldwide. Technologies such as data mining, have enabled experts in this area to improve decision making in the early diagnosis of the disease. Therefore, the purpose of this research is to develop an automatic diagnostic model for breast cancer by employing data mining methods and selecting the model with the highest accuracy of diagnosis.
Materials and Methods: In this study, 654 available patient records of Motahari breast cancer Clinic in Shiraz" were used as the sample. The number of records was reduced to 621 after the pre-processing operation. These samples had 22 features that ultimately used ten were used as effective features in the design of the model. Three types of Decision tree, Naive Bayes and Artificial neural network were used for diagnosis of breast cancer and 10-fold cross-validation method for constructing and evaluating the model on the collected data set.
Results: The results of the three techniques mentioned all three models showed promising results in detecting breast cancer. Finally, the artificial neural network accounted for the highest accuracy of 94/49%(sensitivity 96/19%, specificity 86/36%) in the diagnosis of breast cancer.
Conclusion:  Based on the results of the decision tree, the risk factors such as age, weight, Age of menstruation, menopause, OCP of records duration, and the age of the first pregnancy were among the factors affecting the incidence of breast cancer in women. 

Mohsen Rezaei, Nazanin Zahra Jafari, Hossein Ghaffarian, Masoud Khosravi Farmad3, Iman Zabbah, Parvaneh Dehghan,
Volume 13, Issue 5 (1-2020)
Abstract

Background and Aim: Timely diagnosis and treatment of abnormal thyroid function can reduce the mortality associated with this disease. However, lack of timely diagnosis will have irreversible complications for the patient. Using data mining techniques, the aim of this study is to determine the status of the thyroid gland in terms of normality, hyperthyroidism or hypothyroidism.
Materials and Methods: Using supervised and unsupervised methods after data preprocessing, predictive modeling was performed to classify thyroid disease. This is an analytical study and its dataset contains 215 independent records based on 5 continuous features retrieved from the UCI machine learning data reference.
Results: In supervised method, multilayer perception(MLP), learning vector quantization(LVQ), and fuzzy neural network(FNN) were used; and in unsupervised method, fuzzy clustering was employed. Besides, these precision figures(0.055, 0.274, 0.012 and 1.031) were obtained by root mean square error(RMSE) method, respectively.
Conclusion: Reducing the diagnosis error of thyroid disease was one of the goals of researchers. Using data mining techniques can help reduce this error. In this study, thyroid disease was diagnosed by different pattern recognition methods. The results show that the fuzzy neural network(FNN) has the least error rate and the highest accuracy.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb