Search published articles


Showing 2 results for Diagnostic Model

Azita Yazdani, Ali Asghar Safaei, Reza Safdari, Maryam Zahmatkeshan,
Volume 13, Issue 3 (9-2019)
Abstract

Background and Aim: Breast cancer is the most common type of cancer and the main cause of death from cancer in women worldwide. Technologies such as data mining, have enabled experts in this area to improve decision making in the early diagnosis of the disease. Therefore, the purpose of this research is to develop an automatic diagnostic model for breast cancer by employing data mining methods and selecting the model with the highest accuracy of diagnosis.
Materials and Methods: In this study, 654 available patient records of Motahari breast cancer Clinic in Shiraz" were used as the sample. The number of records was reduced to 621 after the pre-processing operation. These samples had 22 features that ultimately used ten were used as effective features in the design of the model. Three types of Decision tree, Naive Bayes and Artificial neural network were used for diagnosis of breast cancer and 10-fold cross-validation method for constructing and evaluating the model on the collected data set.
Results: The results of the three techniques mentioned all three models showed promising results in detecting breast cancer. Finally, the artificial neural network accounted for the highest accuracy of 94/49%(sensitivity 96/19%, specificity 86/36%) in the diagnosis of breast cancer.
Conclusion:  Based on the results of the decision tree, the risk factors such as age, weight, Age of menstruation, menopause, OCP of records duration, and the age of the first pregnancy were among the factors affecting the incidence of breast cancer in women. 

Mostafa Shanbehzadeh, Hadi Kazemi-Arpanahi, Raoof Nopour,
Volume 16, Issue 2 (5-2022)
Abstract

Background and Aim: Breast cancer is one of the most common and aggressive malignancies in women. Timely diagnosis of breast cancer plays an important role in preventing the progression of this disease, timely treatment measures, and aftermath reducing the mortality rate of these patients. Machine learning has the potential ability to diagnose diseases quickly and cost-effectively. This study aims to design a CDSS based on the rules extracted from the decision tree algorithm with the best performance to diagnose breast cancer in a timely and effective manner.
Materials and Methods: The data of 597 suspected people with breast cancer (255 patients and 342 healthy people) were retrospectively extracted from the electronic database of Ayatollah Taleghani Hospital in Abadan city with 24 characteristics, mainly pertained to lifestyle and medical histories. After selecting the most important variables by using the Chi-square Pearson and one-way analysis of variance (P<0.05), the performance of selected data mining algorithms including RF, J-48, DS, RT and XG -Boost was evaluated for breast cancer diagnosis in Weka 3.4 software. Finally, the breast cancer diagnostic system was designed based on the best model and through C# programming language and Dot Net Framework V3.5.4.
Results: Fourteen variables including personal history of breast cancer, breast sampling, and chest X-ray, high blood pressure, increased LDL blood cholesterol, presence of mass in upper inner quadrant of the breast, hormone therapy with estrogen, hormone therapy with Estrogen-progesterone, family history of breast cancer, age, history of other cancers, waist-to-hip ratio and fruit and vegetable consumption showed a significant relationship with the output class at the P<0.05. Based on the results of the performance evaluation of selected algorithms, the RF model with sensitivity, specificity, accuracy, and F- measure equal to 0.97, 0.99, 0.98, 0.974, respectively, AUC=0.936 had higher performance than other selected algorithms and was suggested as the best model for breast cancer diagnosis.
Conclusion: It seems that using modifiable variables such as lifestyle and reproductive-hormonal characteristics as input to the RF algorithm to design the CDSS, can detect breast cancer cases with optimal accuracy. In addition, the proposed system can be effectively adapted in real clinical environments for quick and effective disease diagnosis.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb