Search published articles


Showing 2 results for Naive Bayes

Azita Yazdani, Ali Asghar Safaei, Reza Safdari, Maryam Zahmatkeshan,
Volume 13, Issue 3 (9-2019)
Abstract

Background and Aim: Breast cancer is the most common type of cancer and the main cause of death from cancer in women worldwide. Technologies such as data mining, have enabled experts in this area to improve decision making in the early diagnosis of the disease. Therefore, the purpose of this research is to develop an automatic diagnostic model for breast cancer by employing data mining methods and selecting the model with the highest accuracy of diagnosis.
Materials and Methods: In this study, 654 available patient records of Motahari breast cancer Clinic in Shiraz" were used as the sample. The number of records was reduced to 621 after the pre-processing operation. These samples had 22 features that ultimately used ten were used as effective features in the design of the model. Three types of Decision tree, Naive Bayes and Artificial neural network were used for diagnosis of breast cancer and 10-fold cross-validation method for constructing and evaluating the model on the collected data set.
Results: The results of the three techniques mentioned all three models showed promising results in detecting breast cancer. Finally, the artificial neural network accounted for the highest accuracy of 94/49%(sensitivity 96/19%, specificity 86/36%) in the diagnosis of breast cancer.
Conclusion:  Based on the results of the decision tree, the risk factors such as age, weight, Age of menstruation, menopause, OCP of records duration, and the age of the first pregnancy were among the factors affecting the incidence of breast cancer in women. 

Nastaran Abbasi Hasanabadi, Farzad Firouzi Jahantigh, Payam Tabarsi,
Volume 13, Issue 6 (2-2020)
Abstract

Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a tool for the diagnosis of pulmonary Tuberculosis.
Materials and Methods: In this practical study, the study population included Patients with TB symptoms, the study sample is recorded data of 582 individuals with primary Tuberculosis symptoms in Tehran's Masih Daneshvari Hospital. The data of samples were investigated in two classes of pulmonary Tuberculosis and non-Tuberculosis. A Naive Bayes algorithm for screening pulmonary Tuberculosis using primary symptoms of patients has been used in Python software version 3.7.
Results: Accuracy, sensitivity and specificity after the implementation of the Naive Bayes algorithm for diagnosis of pulmonary Tuberculosis were %95.89, %93.59 and %98.53, respectively, and the Area under curve was calculated %98.91.
Conclusion: The performance of a Naive Bayes model for diagnosis of pulmonary Tuberculosis is accurate. This system can be used to help the patient and manage illness in remote areas with limited access to laboratory resources and healthcare professional and cause to diagnose early Tuberculosis. It can also lead to timely and appropriate proceedings to control the transmission of TB to other people and to accelerate the recovery of the disease.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by: Yektaweb