جستجو در مقالات منتشر شده


2 نتیجه برای بیز ساده

آزیتا یزدانی، علی اصغر صفایی، رضا صفدری، مریم زحمت کشان،
دوره 13، شماره 3 - ( 6-1398 )
چکیده

زمینه و هدف: سرطان پستان شایع‌‌ترین سرطان و اصلی‌ترین علت مرگ ناشی از سرطان در زنان سراسر جهان به­‌شمار می‌رود. تکنولوژی‌هایی مثل داده کاوی، به متخصصان این حوزه، امکان بهبود تصمیم‌گیری را در زمینه­ی تشخیص زودهنگام فراهم آورده‌اند. هدف از این پژوهش توسعه­‌ی مدل تشخیص‌ خودکار سرطان پستان با به­‌کارگیری روش‌های داده کاوی و انتخاب مدل بومی ویژه بیماران استان فارس با بالا‌ترین دقت تشخیص می‌باشد.
روش بررسی: در این مطالعه، تعداد 654 پرونده در دسترس از بیماران کلینیک تخصصی سرطان پستان مطهری شیراز به­‌عنوان نمونه مورد استفاده قرار گرفت که بعد از عملیات پیش پردازش این تعداد به 621 پرونده کاهش یافت. برای هر کدام از نمونه­‌ها دارای 22 ویژگی در پرونده پزشکی ثبت شده بود که در نهایت 10 ویژگی تاثیر‌گذار در ساخت مدل استفاده شد. از سه روش درخت تصمیم، بیز ساده و شبکه عصبی مصنوعی به­‌منظور تشخیص ابتلا به سرطان پستان و روش 10-fold cross-validation برای ساخت و ارزیابی مدل بر روی مجموعه داده­‌ی جمع‌­آوری شده بهره گرفته شد.
 یافته‌ها: نتایج به­‌دست آمده از سه تکنیک ذکر شده نشان داد که هر سه مدل، نتایج امیدبخشی در تشخیص این سرطان دارند. در نهایت، شبکه عصبی مصنوعی، بالا‌ترین دقت 94/49%(حساسیت 96/19%، ویژگی 86/36%)، در تشخیص ابتلا به سرطان پستان به خود اختصاص داد.
نتیجه گیری: بر طبق نتایج حاصل از درخت تصمیم ایجاد شده، ریسک فاکتورهایی چون سن، وزن، سن شروع قاعدگی، یائسگی، مدت زمان مصرف OCP و سن اولین بارداری از جمله عوامل موثر در ابتلای زنان به سرطان پستان در استان فارس شناخته شدند.

نسترن عباسی حسن آبادی، فرزاد فیروزی جهانتیغ، پیام طبرسی،
دوره 13، شماره 6 - ( 12-1398 )
چکیده

زمینه و هدف: موفقیت مورد انتظار در کاهش و کنترل بیماری سل به­‌رغم اجرای برنامه­ های پیشگیرانه و درمانی مؤثر فراهم نشده که یکی از دلایل آن، تاخیر در تشخیص قطعی می­­‌باشد. بنابراین ایجاد یک سیستم کمک تشخیص برای غربالگری بیماری سل می­‌تواند به تشخیص زودهنگام این بیماری کمک کند. هدف از این تحقیق، ارزیابی الگوریتم بیز ساده به‌­عنوان ابزاری برای تشخیص سل ریوی است.
روش بررسی: در این مطالعه­‌ی کاربردی، جامعه پژوهش بیماران دارای علایم سل و نمونه پژوهش، داده‌­های ثبت شده‌­ی ۵۸۲ فرد با علایم اولیه سل در بیمارستان مسیح دانشوری تهران است. اطلاعات نمونه­‌ها با تشخیص تاییدشده در دو کلاس مبتلا به سل ریوی و نرمال بررسی گردید. از الگوریتم بیز ساده (Naive Bayes) برای غربالگری بیماری سل ریوی با استفاده از علایم عمومی و اولیه بیماران از زبان برنامه­نویسی پایتونPython)  ) استفاده شده است.
یافته ­ها: دقت (Accuracy)، حساسیت (sensitivity) و ویژگیspecificity) ) حاصل از پیاده­‌سازی الگوریتم بیز ساده جهت تشخیص بیماری سل ریوی به­ترتیب ۹۵/۸۹%، ۹۳/۵۹% و ۹۸/۵۳% به‌­دست آمد و سطح زیر منحنی مشخصه عملکرد (AUC) برابر با ۹۸/۹۱% محاسبه شد.
نتیجه‌­گیری: عملکرد مدل بیز ساده برای تشخیص بیماری سل ریوی دقت قابل قبولی دارد. این سیستم می­‌تواند برای کمک به بیمار و مدیریت بیماری در نقاط دور افتاده با دسترسی محدود به منابع آزمایشگاهی و کمبود متخصص، استفاده و موجب تسریع در تشخیص شود. همچنین می­‌تواند موجب اقداماتی به­موقع و مناسب جهت کنترل سرایت سل ریوی به سایر افراد و تسریع بهبود این بیماری باشد.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به پیاورد سلامت می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb