جستجو در مقالات منتشر شده


2 نتیجه برای شبکه عصبی مصنوعی

اعظم اروجی، مصطفی لنگری زاده، مریم آقازاده، مهران کامکار حقیقی، مرجان قاضی سعیدی، فاطمه مقبلی،
دوره 12، شماره 4 - ( 8-1397 )
چکیده

زمینه و هدف: هوش مصنوعی شاخه‌ای از علوم کامپیوتر است که توانایی تحلیل داده‌های پزشکی پیچیده را دارد که استفاده از آن در تشخیص، درمان و مراقبت از بیماران رایج است. وارفارین یکی از رایج‌ترین داروهای ضدانعقادی است که تعیین دقیق دوز مورد نیاز بیماران یکی از چالش های عمده در نظام سلامت است که مورد توجه پژوهشگران قرار گرفته است. هدف این پژوهش تعیین دوز وارفارین مورد نیاز بیماران دارای دریچه مصنوعی قلب با استفاده از شبکه‌های عصبی است.
روش بررسی: تعداد 9 شبکه عصبی پرسپترون چند لایه با ساختارهای متفاوت ایجاد شد. برای ارزیابی عملکرد شبکه‌ها از 
داده های 846 بیمار استفاده شد که در شش ماهه‌ی دوم سال 92 به درمانگاه PT مرکز قلب تهران مراجعه کرده بودند. تمام شبیه‌سازی‌ها شامل پیش پردازش داده و طراحی شبکه عصبی در محیط Matlab انجام گردید.
یافته‌ها: ارزیابی‌عملکرد شبکه‌ها بر اساس روش 10 fold cross انجام شد که نشان داد بهترین شبکه عصبی، شبکه ای است که دارای 7 نورون در لایه‌ی پنهان خود است که دارای میانگین خطای مطلق=0.1، نرخ اغتشاش=0.33 و رگرسیون=0.87 درصد بود.
نتیجه‌گیری: نتایج پژوهش بیانگر این نکته است که شبکه‌های عصبی مصنوعی بر روی داده‌های بومی قادر به پیش بینی دوز وارفارین در بیماران دارای دریچه قلب مصنوعی می‌باشد. هر چند هیچ سیستمی قادر به ارایه پاسخ صحیح در صددرصد موارد نیست، لیکن این گونه سیستم ها می توانند کمک موثری در کاهش میزان خطاهای پزشکی باشند.

محسن رضایی، نازنین زهرا جعفری، حسین غفاریان، مسعود خسروی فارمد، ایمان ذباح، پروانه دهقان،
دوره 13، شماره 5 - ( 10-1398 )
چکیده

زمینه و هدف: تشخیص به‌موقع عملکرد غیرطبیعی تیروئید و به­دنبال آن در پیش گرفتن درمان صحیح، می‏تواند باعث کاهش مرگ‌ومیر مرتبط با این بیماری شود. هم‏چنین عدم‌تشخیص به‌موقع، عوارض جبران‌ناپذیری برای بیمار در پی خواهد داشت. این مطالعه، با هدف تعیین وضعیت غده تیروئید از نظر نرمال بودن، پرکاری یا کم‌کاری با استفاده از تکنیک‏های داده‌کاوی انجام‌شده است.
روش بررسی: تولید مدل پیش‏‌بینی کننده به‌منظور طبقه‌بندی بیماری تیروئید، پس از پیش‌پردازش داده‏‌ها با استفاده از روش‌های نظارت‌شده و بدون ناظر انجام گردید. این مطالعه از نوع تحلیلی بوده و پایگاه داده ­ی آن شامل ۲۱۵ رکورد مستقل مبتنی بر ۵ ویژگی پیوسته و برگرفته‌شده از مرجع داده یادگیری ماشین UCI می‏باشد.
یافتهها: در روش نظارت‌شده از شبکه‏ های عصبی پرسپترون چندلایه و شبکه عصبی بردار یادگیر و شبکه عصبی فازی و در روش بدون نظارت از خوشه ‏بندی فازی استفاده گردید. با روش حداقل مربعات خطا (RMSE) به ­ترتیب دقت‏ های ۰/۰۵۵ و ۰/۲۷۴ و ۰/۰۱۲ و ۰/۰۳۱ حاصل شد.
نتیجه‌گیری: کاهش خطای تشخیص بیماری تیروئید یکی از اهداف محققان بوده است. استفاده از روش‏ های مبتنی بر داده‌کاوی می‏ تواند به کاهش این خطا کمک کند. در این مطالعه تشخیص بیماری تیروئید به کمک روش‏های مختلف تشخیص الگو صورت گرفت. نتایج نشان می‏ دهد که مدل عصبی فازی دارای حداقل میزان خطا و بیشترین دقت است.
 


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به پیاورد سلامت می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb