جستجو در مقالات منتشر شده


1 نتیجه برای شبکه عصبی کانولشن

مرسا غلامزاده، سید محمد ایوب زاده، هدا زاهدی، شراره رستم نیاکان کلهری،
دوره 15، شماره 3 - ( 5-1400 )
چکیده

زمینه و هدف: با توجه به اهمیت بالای تصاویر رادیولوژی برای شناسایی بیماران کووید ۱۹، ایجاد مدلی مبتنی بر یادگیری عمیق از اهداف اصلی این پژوهش است.
 روش بررسی: از ۱۵۱۵۳ تصویر موجود از تصاویر قفسه سینه مربوط به افراد سالم، مبتلا به کووید ۱۹ و مبتلا به پنومونی در مخزن داده‌های سایت Kaggle به‌عنوان داده‌های این پژوهش استفاده شد. پیش پردازش داده‌ها شامل نرمال‌سازی تصاویر و تجمیع برچسب تصاویر و دسته‌بندی آنها  به سه دسته‌ی آموزش، اعتبارسنجی و تست می‌شد. سپس با استفاده از زبان پایتون در کتابخانه‌ی fastAI مبتنی بر تکنیک کانولوشن (CNN) و براساس چهار معماری (ResNet ,VGG MobileNet ,AlexNet)، ۹ مدل از طریق روش یادگیری انتقالی برای تشخیص افراد سالم از افراد بیمار، آموزش داده شد. در نهایت، میزان عملکرد این مدل‌ها با شاخص‌هایی چون صحت، حساسیت و ویژگی، و F-Measure ارزیابی شد.
یافته‌ها: از بین ۹ مدل ایجاد شده، مدل ResNet۱۰۱ دارای بیشترین توان تشخیص موارد مبتلا به کرونا از سایر موارد با شاخص حساسیت ۰/۹۵/۲۹ بود. دیگر مدل‌های به کار گرفته شده، صحتی بیش از ۹۶% در تشخیص درست موارد مختلف تصاویر تست از خود نشان دادند. مدل ResNet۱۰۱ توانست صحتی معادل ۷۴/۹۸/۰ در تشخیص بین موارد سالم و مبتلا از خود نشان دهد.
نتیجه گیری: میزان صحت به دست آمده، نشان‌دهنده‌ی عملکرد دقیق مدل پیش بینی در تشخیص کووید ۱۹ می‌باشد. بنابراین با پیاده‌سازی یک برنامه کاربردی براساس مدل توسعه‌یافته می‌توان به پزشکان در تشخیص دقیق و زودهنگام موارد مبتلا یاری رساند.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به پیاورد سلامت می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb