جستجو در مقالات منتشر شده


2 نتیجه برای مدل تشخیص

آزیتا یزدانی، علی اصغر صفایی، رضا صفدری، مریم زحمت کشان،
دوره 13، شماره 3 - ( 6-1398 )
چکیده

زمینه و هدف: سرطان پستان شایع‌‌ترین سرطان و اصلی‌ترین علت مرگ ناشی از سرطان در زنان سراسر جهان به­‌شمار می‌رود. تکنولوژی‌هایی مثل داده کاوی، به متخصصان این حوزه، امکان بهبود تصمیم‌گیری را در زمینه­ی تشخیص زودهنگام فراهم آورده‌اند. هدف از این پژوهش توسعه­‌ی مدل تشخیص‌ خودکار سرطان پستان با به­‌کارگیری روش‌های داده کاوی و انتخاب مدل بومی ویژه بیماران استان فارس با بالا‌ترین دقت تشخیص می‌باشد.
روش بررسی: در این مطالعه، تعداد 654 پرونده در دسترس از بیماران کلینیک تخصصی سرطان پستان مطهری شیراز به­‌عنوان نمونه مورد استفاده قرار گرفت که بعد از عملیات پیش پردازش این تعداد به 621 پرونده کاهش یافت. برای هر کدام از نمونه­‌ها دارای 22 ویژگی در پرونده پزشکی ثبت شده بود که در نهایت 10 ویژگی تاثیر‌گذار در ساخت مدل استفاده شد. از سه روش درخت تصمیم، بیز ساده و شبکه عصبی مصنوعی به­‌منظور تشخیص ابتلا به سرطان پستان و روش 10-fold cross-validation برای ساخت و ارزیابی مدل بر روی مجموعه داده­‌ی جمع‌­آوری شده بهره گرفته شد.
 یافته‌ها: نتایج به­‌دست آمده از سه تکنیک ذکر شده نشان داد که هر سه مدل، نتایج امیدبخشی در تشخیص این سرطان دارند. در نهایت، شبکه عصبی مصنوعی، بالا‌ترین دقت 94/49%(حساسیت 96/19%، ویژگی 86/36%)، در تشخیص ابتلا به سرطان پستان به خود اختصاص داد.
نتیجه گیری: بر طبق نتایج حاصل از درخت تصمیم ایجاد شده، ریسک فاکتورهایی چون سن، وزن، سن شروع قاعدگی، یائسگی، مدت زمان مصرف OCP و سن اولین بارداری از جمله عوامل موثر در ابتلای زنان به سرطان پستان در استان فارس شناخته شدند.

مصطفی شنبه زاده، هادی کاظمی آرپناهی، رئوف نوپور،
دوره 16، شماره 2 - ( 3-1401 )
چکیده

زمینه و هدف: سرطان پستان یکی از رایج‌ترین و تهاجمی‌ترین بدخیمی‌ها در خانم‌ها می‌باشد. تشخیص به‌موقع سرطان پستان نقش مهمی در جلوگیری از پیشرفت این بیماری، اقدامات درمانی به‌موقع و در نتیجه کاهش میزان مرگ‌ومیر این بیماران دارد. یادگیری ماشین، قابلیت بالایی در تشخیص سریع و هزینه اثربخش بیماری‌ها دارد. هدف این مطالعه، طراحی سیستم تصمیم‌یار بالین (CDSS) Clinical Decision Support System بر اساس قوانین استخراج‌شده از الگوریتم منتخب درخت تصمیم با بهترین عملکرد به‌منظور تشخیص به‌موقع و مؤثر سرطان پستان است.
روش بررسی: داده‌های ۵۹۷ فرد مشکوک به سرطان پستان(۲۵۵ بیمار مبتلا و ۳۴۲ فرد سالم) به‌صورت گذشته‌نگر از پایگاه داده الکترونیکی بیمارستان آیت‌الله طالقانی شهر آبادان در قالب ۲۴ ویژگی عمدتاً سبک زندگی و سوابق پزشکی استخراج شد. پس از انتخاب مهم‌ترین متغیرها از طریق کای دو پیرسون و تحلیل واریانس یک‌طرفه(۰/۰۵>P)، عملکرد الگوریتم‌های منتخب داده‌کاوی شامل (Random Forest (RF)، J-۴۸، Decision Stump (DS)، Rep-Tree (RT و XG-Boost برای تشخیص سرطان پستان در بستر نرم‌افزار ۳.۴ Weka تحلیل شد. در نهایت سیستم تشخیصی سرطان پستان بر اساس بهترین مدل و از طریق زبان برنامه‌نویسی سی شارپ و چارچوب ۳.۵.۴ Dot Net Framework طراحی گردید.
یافته‌ها: ۱۴ متغیر شامل سابقه‌ی فردی سرطان پستان، سابقه‌ی نمونه‌برداری از سینه، سابقه‌ی رادیوگرافی از قفسه‌ی سینه، سابقه‌ی فشارخون، افزایش کلسترول خون LDL (low-density lipoprotein)، وجود توده در ربع فوقانی داخلی سینه، هورمون‌درمانی با استروژن، هورمون‌درمانی با استروژن-پروژسترون، سابقه‌ی خانوادگی سرطان پستان، سن، سابقه‌ی سرطان‌های دیگر، نسبت اندازه‌ی دور کمر به دور باسن و مصرف میوه و سبزی ارتباط معناداری را باکلاس خروجی در سطح ۰۵/۰>P نشان دادند. بر اساس نتایج حاصل از ارزیابی عملکرد الگوریتم‌های منتخب، مدل RF با میزان حساسیت، ویژگی، صحت و اندازه F به‌ترتیب برابر با ۰/۹۷، ۰/۹۹، ۰/۹۸ و ۰/۹۷۴ و ۰/۹۳۶ =(Area Under the Receiver Operator Characteristics (ROC) Curve (AUC عملکرد بالاتری نسبت به سایر الگوریتم‌های منتخب داشته است و به‌عنوان مدل برتر برای تشخیص سرطان پستان پیشنهاد شد.
نتیجه‌گیری: به‌نظر می‌رسد که استفاده از متغیرهای تعدیل‌پذیر مانند سبک زندگی و ویژگی‌های هورمونی-تولیدمثلی به‌عنوان ورودی الگوریتم RF برای طراحی CDSS بتواند با صحت بهینه موارد سرطان پستان را تشخیص دهد. به‌علاوه سیستم پیشنهادی به‌طور مؤثر در محیط‌های واقعی بالینی برای تشخیص سریع و مؤثر بیماری قابل اقتباس باشد.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به پیاورد سلامت می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb