جستجو در مقالات منتشر شده


5 نتیجه برای یادگیری ماشین

اعظم اروجی، مصطفی لنگری زاده، مریم آقازاده، مهران کامکار حقیقی، مرجان قاضی سعیدی، فاطمه مقبلی،
دوره 12، شماره 4 - ( 8-1397 )
چکیده

زمینه و هدف: هوش مصنوعی شاخه‌ای از علوم کامپیوتر است که توانایی تحلیل داده‌های پزشکی پیچیده را دارد که استفاده از آن در تشخیص، درمان و مراقبت از بیماران رایج است. وارفارین یکی از رایج‌ترین داروهای ضدانعقادی است که تعیین دقیق دوز مورد نیاز بیماران یکی از چالش های عمده در نظام سلامت است که مورد توجه پژوهشگران قرار گرفته است. هدف این پژوهش تعیین دوز وارفارین مورد نیاز بیماران دارای دریچه مصنوعی قلب با استفاده از شبکه‌های عصبی است.
روش بررسی: تعداد 9 شبکه عصبی پرسپترون چند لایه با ساختارهای متفاوت ایجاد شد. برای ارزیابی عملکرد شبکه‌ها از 
داده های 846 بیمار استفاده شد که در شش ماهه‌ی دوم سال 92 به درمانگاه PT مرکز قلب تهران مراجعه کرده بودند. تمام شبیه‌سازی‌ها شامل پیش پردازش داده و طراحی شبکه عصبی در محیط Matlab انجام گردید.
یافته‌ها: ارزیابی‌عملکرد شبکه‌ها بر اساس روش 10 fold cross انجام شد که نشان داد بهترین شبکه عصبی، شبکه ای است که دارای 7 نورون در لایه‌ی پنهان خود است که دارای میانگین خطای مطلق=0.1، نرخ اغتشاش=0.33 و رگرسیون=0.87 درصد بود.
نتیجه‌گیری: نتایج پژوهش بیانگر این نکته است که شبکه‌های عصبی مصنوعی بر روی داده‌های بومی قادر به پیش بینی دوز وارفارین در بیماران دارای دریچه قلب مصنوعی می‌باشد. هر چند هیچ سیستمی قادر به ارایه پاسخ صحیح در صددرصد موارد نیست، لیکن این گونه سیستم ها می توانند کمک موثری در کاهش میزان خطاهای پزشکی باشند.

نیلوفر محمدزاده، زیبا مسیبی، حمید بیگی، محمد شجاعی نیا،
دوره 14، شماره 6 - ( 11-1399 )
چکیده

زمینه و هدف: سپسیس، مهمترین بیماری ۲۸ روز اول زندگی و از دلایل اصلی مرگ‌و‌میر نوزادان در بخش مراقبت‌های ویژه می‌باشد. سپسیس نوزادی می‌تواند از علایم بالینی عفونت‌های بیمارستانی باشد. از‌این‌رو هدف از این پژوهش، ایجاد و ارزیابی مدل پیش‌بینی سپسیس بیمارستانی و ارایه نتایج آن به ارایه‌دهندگان خدمات مراقبت سلامت است. 
روش بررسی: در این مطالعه‌ی توصیفی کاربردی، جامعه‌ی پژوهش شامل نوزادان بستری در بخش مراقبت‌های ویژه بیمارستان ولیعصر(عج) تهران و نمونه پژوهش، داده‌های ثبت شده‌ی ۴۱۹۶ نوزاد بستری شده در این بخش از سال ۹۵ تا شهریور‌ماه ۹۹ می‌باشد. ویژگی‌های اولیه جهت ایجاد مدل پیش‌بینی بیماری سپسیس با بررسی منابع اطلاعاتی مرتبط و مطابق با نظر استادان و مسئولان مرکز تحقیقات مادر و جنین بیمارستان ولیعصر تهیه گردید و روایی آن توسط ۵ نفر از استادان فوق‌تخصص نوزادان این بیمارستان تایید شد. در این پژوهش از الگوریتم‌های یادگیری ماشین جهت ایجاد مدل پیش‌بینی سپسیس استفاده شده است. 
یافته‌ها: برای ارزیابی مدل‌های ایجاد شده، از پارامترهای Accuracy و AUROC (سطح زیرمنحنیROC) استفاده شد. بیشترین مقدار Accuracy و AUROC به‌ترتیب مربوط به الگوریتم‌های Adaptive Boosting و جنگل تصادفی می‌باشد.
نتیجه‌گیری: منحنی‌های یادگیری نشان می‌دهد که با استفاده از نمونه‌های آموزشی مختلف و انتخاب پیچیده‌تر ویژگیهای ترکیبی، عملکرد مدل‌ها بهبود می‌یابد. تحقیقات بیشتر برای ارزیابی اثربخشی بالینی مدل‌های یادگیری ماشین در یک کارآزمایی ضروری است. 

مرسا غلامزاده، سید محمد ایوب زاده، هدا زاهدی، شراره رستم نیاکان کلهری،
دوره 15، شماره 3 - ( 5-1400 )
چکیده

زمینه و هدف: با توجه به اهمیت بالای تصاویر رادیولوژی برای شناسایی بیماران کووید ۱۹، ایجاد مدلی مبتنی بر یادگیری عمیق از اهداف اصلی این پژوهش است.
 روش بررسی: از ۱۵۱۵۳ تصویر موجود از تصاویر قفسه سینه مربوط به افراد سالم، مبتلا به کووید ۱۹ و مبتلا به پنومونی در مخزن داده‌های سایت Kaggle به‌عنوان داده‌های این پژوهش استفاده شد. پیش پردازش داده‌ها شامل نرمال‌سازی تصاویر و تجمیع برچسب تصاویر و دسته‌بندی آنها  به سه دسته‌ی آموزش، اعتبارسنجی و تست می‌شد. سپس با استفاده از زبان پایتون در کتابخانه‌ی fastAI مبتنی بر تکنیک کانولوشن (CNN) و براساس چهار معماری (ResNet ,VGG MobileNet ,AlexNet)، ۹ مدل از طریق روش یادگیری انتقالی برای تشخیص افراد سالم از افراد بیمار، آموزش داده شد. در نهایت، میزان عملکرد این مدل‌ها با شاخص‌هایی چون صحت، حساسیت و ویژگی، و F-Measure ارزیابی شد.
یافته‌ها: از بین ۹ مدل ایجاد شده، مدل ResNet۱۰۱ دارای بیشترین توان تشخیص موارد مبتلا به کرونا از سایر موارد با شاخص حساسیت ۰/۹۵/۲۹ بود. دیگر مدل‌های به کار گرفته شده، صحتی بیش از ۹۶% در تشخیص درست موارد مختلف تصاویر تست از خود نشان دادند. مدل ResNet۱۰۱ توانست صحتی معادل ۷۴/۹۸/۰ در تشخیص بین موارد سالم و مبتلا از خود نشان دهد.
نتیجه گیری: میزان صحت به دست آمده، نشان‌دهنده‌ی عملکرد دقیق مدل پیش بینی در تشخیص کووید ۱۹ می‌باشد. بنابراین با پیاده‌سازی یک برنامه کاربردی براساس مدل توسعه‌یافته می‌توان به پزشکان در تشخیص دقیق و زودهنگام موارد مبتلا یاری رساند.

فریبا معلم برازجانی، آزیتا یزدانی، رضا صفدری، سید منصور گتمیری،
دوره 17، شماره 6 - ( 11-1402 )
چکیده

زمینه و هدف: نارسایی کلیه از مشکلات شایع و رو به افزایش در ایران و جهان به شمار می‌رود. پیوند کلیه به‌ عنوان روش‌درمانی ارجح برای بیماران مبتلا به ESRD شناخته شده است. یادگیری ماشین به عنوان یکی از ارزشمند‌ترین شاخه‌های هوش مصنوعی در زمینه‌ی پیش‌بینی بقای بیماران یا پیش‌بینی بروز حـالات مختلف در بیماران کاربرد بسزایی دارد. هدف از انجام این پژوهش پیش‌بینی پیامدهای پیوند کلیه در بیماران، با استفاده از یادگیری ماشین است.
روش بررسی: از آن‌جایی که یکی از قوی‌ترین روش‌شناسی‌ها در زمینه‌ی اجرا و پیاده‌سازی پروژه‌های داده کاوی CRISP است، این روش‌شناسی به عنوان روش کار انتخاب شد. به منظور شناسایی عوامل مؤثر در پیش‌بینی پیامد‌های پیوند کلیه، پس از مرور متون مرتبط، چک‌لیستی محقق ساخته جهت مشخص کردن میزان ضرورت هرکدام از عوامل مؤثر بر نتیجه‌ی پیوند برای تعدادی از نفرولوژیست‌های سراسر کشور ارسال شده و نتایج تحلیل و بررسی شد. سپس با استفاده از زبان پایتون و الگوریتم‌های مختلف یادگیری ماشین از جمله ماشین‌بردار پشتیبان، جنگل‌های تصادفی، K نزدیک‌ترین همسایه، گرادیان افزایشی و یادگیری عمیق، به مدل‌سازی بر روی داده‌ها پرداخته شد.
یافته‌ها: مدل نهایی از نوع چند برچسبی و بر اساس الگویتم جنگل تصادفی بود که بتواند پیامد‌های مختلف پیوند کلیه که در این مطالعه شامل احتمال پس‌زدگی، واکنش‌های دیابتیک، واکنش‌های بدخیمی و بستری مجدد بیمار بود را به صورت یک جا پیش‌بینی کند. پس از انجام مراحل پیش پردازش بر روی داده ها و مدل‌سازی بر روی ویژگی‌های داده‌ی ورودی به وسیله الگوریتم‌های مختلف، مدل نهایی قادر بود با خطایی کمتر از ۰/۰۱ به پیش‌بینی چهار مورد پیامد پیوند کلیه یعنی پس‌زدگی، ابتلا به دیابت، واکنش‌های بدخیمی و بستری مجدد بیمار بپردازد.
نتیجه‌گیری: میزان بالای درستی و دقت مدل جنگل تصادفی نشان از قدرت بالای این مدل برای پیش‌بینی پیامدهای پیوند کلیه دارد. در این مطالعه، مؤثرترین عوامل در ابتلای بیمار به پیامدهای ذکر شده شناسایی شد. برای نمونه‌های جدید با استفاده از این سیستم مبتنی بر یادگیری ماشین می‌توان به پیش‌بینی احتمال بروز این پیامدها برای بیماران پرداخت.

سارا هاشمی، شهلا فرامرزی، لعیا رحمانی پیروزی، آزیتا یزدانی،
دوره 18، شماره 2 - ( 3-1403 )
چکیده

زمینه و هدف: سوختگی یکی از شایع‌ترین آسیب‌ها در سراسر جهان و ششمین عامل مرگ‌و میر در ایران است. چالش‌های مربوط به میزان بقای بیماران دچار سوختگی و همچنین مرگ‌و میر ناشی از آن، منجر به پیشرفت در شناسایی عوامل خطر شده است. تشخیص زودهنگام و شناخت عوامل خطر ضروری است و ارایه مدل‌های پیش‌بینی‌کننده می‌تواند مفید باشد. بر این اساس، این پژوهش با هدف مرور عملکرد هوش مصنوعی در پیش‌بینی بقا در بیماران سوختگی انجام گردید.
روش‌بررسی: این مطالعه از نوع مرور نظام‌‌مند است. جستجوی جامع پایگاه‌های Scopus، PubMed، (Institute of Electrical and Electronics Engineers (IEEE و Web of Science بدون محدودیت زمانی شروع تا ژانویه ۲۰۲۳ انجام شد. این مطالعه مرور نظام‌مند بر اساس موارد ترجیحی گزارش برای بررسی‌های سیستماتیک و متاآنالیز انجام گردید. کلمات کلیدی و اصطلاحات مش مرتبط با سوختگی، هوش مصنوعی، بقا و پیش‌بینی در استراتژی سرچ به‌کار رفتند. 
یافته‌ها: از ۳۵۹۹ مطالعه‌ی شناسایی شده، نه مطالعه در تجزیه و تحلیل قرار گرفتند. بر اساس گزارش مقالات، عوامل مؤثر شناخته شده در پیش‌بینی بقا در بیماران سوختگی، به چهار دسته‌ی اطلاعات دموگرافیک، بالینی، آزمایشگاهی و بیماری‌های همراه طبقه‌‌بندی شدند. از عوامل مؤثر شناخته شده در بقای بیماران که در بیش از ۴۰ درصد از مطالعات مورد بررسی قرار گرفته عبارتند از: سن، جنسیت، محاسبه سطح کلی سوختگی در بدن، آسیب ناشی از استنشاق و نوع سوختگی. نتایج نشان داد که در مطالعات مورد بررسی، حجم کم‌ترین مجموعه داده مورد استفاده در تحلیل‌ها ۹۲ نمونه بوده است. در مقابل، حجم بیش‌ترین مجموعه داده مورد استفاده ۶۶۶۱۱ نمونه گزارش شده است. در ۳۳ درصد مطالعات، الگوریتم‌های شبکه عصبی مصنوعی و جنگل تصادفی بهترین عملکرد را داشتند. معیارهای مورد استفاده برای ارزیابی مدل‌ها در مطالعات بازیابی شده متفاوت است.
نتیجه‌گیری: به کارگیری الگوریتم‌های یادگیری ماشین در پیش‌بینی بقای بیماران سوختگی و تعیین عوامل مؤثر امیدوارکننده و مفید هستند. نتایج حاصل از عوامل مؤثر شناخته شده می‌تواند به پژوهشگران حوزه‌ی علم داده در مرحله درک داده کمک‌کننده باشد و در جمع‌آوری مجموعه داده‌ی اولیه به عنوان یک نقشه‌ی راه عمل کند. 


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به پیاورد سلامت می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb