Background: Telomerase as an enzyme with reverse transcriptase activity has an essential role in telomere maintenance by adding a telomere repeat sequence to the 3' end of chromosome and is important for regulating of many processes in embryonic development including cell proliferation and differentiation. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with a self-renewal capacity are cells that can differentiate into various germ layer derivatives including neural cells and cardiomyocytes, and undergo biological changes during long-term cultivation. Hence, the passage number in which the cells expanded seems to be very important for proliferating and differentiating. This study was aimed at investigating the relationship between the telomerase activity and the growth rate of (hUC-MSCs) at different passages.
Methods: This experimental study was performed in Ardabil University of Medical Sciences, Iran, from March 2014 to December 2014. The umbilical cord samples were obtained from full-term neonate hospitalized in Alavi’s Hospital in Ardabil under sterile conditions. The umbilical vessels were clear off and the small pieces of the umbilical cord were cultured in Dulbecco's modified eagle's medium (DMEM) supplemented with 20% fetal bovine serum (FBS). Then, the hUC-MSCs were harvested from passage one to three to calculate the population doubling time (PDT) and extract proteins by using CHAPS lysis buffer. Finally, the telomerase activity of the cells at different passages was measured by telomeric repeat amplification protocol (TRAP) and qRT-TRAP assays.
Results: The hUC-MSCs population doubling time at passage from 1 to 3 were calculated as the average of 54.68±1.92, 55.03±1.71 and 69.41±2.54 hours, respectively, suggesting the higher cell passage number, the more extended PDT. The threshold cycles (CTs) for the telomerase activity also showed 30.58±0.51, 27.24±0.74 and 32.13±0.75 for the cell passage from one to three, respectively, representing the significant increasing in telomerase activity at passage two compared with the other passages (P= 0.021).
Conclusion: Analysis of the growth curve, PDT determination and measurement of telomerase activity of the human umbilical cord-derived mesenchymal stem cells showed that the long-term cell culture can affect on the cell proliferation and the telomerase activity.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |