جستجو در مقالات منتشر شده


1 نتیجه برای حنفی بجد

عاطفه صدیق‌نیا، شراره رستم نیاکان کلهری، مهشید ناصحی، احمد علی حنفی بجد،
دوره 77، شماره 4 - ( تیر 1398 )
چکیده

زمینه و هدف: یکی از بیماری‌های عفونی مهم با مرگ‌ومیر بالا در جهان، سل می‌باشد که هیچ کشوری از آن مصون نیست و امروزه به‌علل مختلف مانند بیماری‌های زمینه‌ای بروز آن بار دیگر در حال افزایش می‌باشد. براساس آخرین گزارش سازمان بهداشت جهانی از وضعیت سل در ایران، سل مقاوم به دارو (MDR-TB) و سل در افراد دارای ویروس نقص ایمنی انسانی (Human immunodeficiency virus, HIV) در کشور رو به افزایش است. پیش‌بینی بروز برای پیشگیری، مدیریت و کنترل بهتر این بیماری امری لازم می‌باشد. هدف این مطالعه ایجاد سیستم پیش‌بینی کننده میزان بروز سل می‌باشد.
روش بررسی: تحلیل گذشته‌نگری بر روی ۱۰۶۵۱ بیمار مسلول ثبت شده بین اول فروردین ۱۳۹۳ تا پایان اسفند ۱۳۹۴ در سیستم وزارت بهداشت، درمان و آموزش پزشکی ایران انجام گرفت. پارامترهای قابل استناد جداسازی شدند و به‌صورت مستقیم، ادغام و یا تولید شاخص جدید در نظر گرفته شدند.
یافته‌ها: ۲۳ متغیر مستقل وارد مطالعه شد که با سنجش همبستگی و محاسبه رگرسیون، ۱۲ متغیر با ۰/۰۱P≤ در اسپیرمن و ۰/۰۵P≤ در پیرسون مرتبط شناخته شد. بهترین نتایج ۰/۹۳R= و ۱۰/۹۶MSE= در داده‌های آموزش، صفر و صفر در داده‌های اعتبارسنجی و ۰/۹۱R= و ۱۳/۲۳MSE= در داده‌های تست و همچنین نمودار رگرسیون چشمگیری از شبکه ایجاد شده با الگوریتم‌های سری زمانی شبکه عصبی در متلب به‌دست آمد.
نتیجه‌گیری: نتایج مطالعه حاضر بیانگر این است که هوش مصنوعی برای استخراج دانش از داده‌های خام جمع‌آوری شده مربوط به بیماری سل عملکرد مناسبی دارد و می‌توان از آن برای پیش‌بینی موارد جدید این بیماری استفاده کرد.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb