Search published articles


Showing 5 results for Sadat Shandiz

Mohammad Ali Rashmezad , Elahe Ali Asgary, Farzaneh Tafvizi , Seyed Ataollah Sadat Shandiz, Amir Mirzaie ,
Volume 72, Issue 12 (March 2015)
Abstract

Background: Biosynthesis of nanoparticles has attracted the attention of the scientific community in nanotechnology and biotechnology due to their extensive application in the area of material sciences and medicine. Nowadays, despite a various application of nanomaterial’s, there is a little information about their impact on human health. In this study, we investigated the comparative study on cytotoxicity effect of biological and commercial synthesized nanosilver on human gastric carcinoma (AGS) and normal lung fibroblast (MRC-5) cell lines. Methods: The current experimental study was carried out in Islamic Azad University, East Tehran Branch, from April to November 2014. The biological synthesis of nanosilver was obtained from Eucalyptus plant extract as a reducing agent. Further to more analysis, morphological study on size and shape of developed biological nanosilver was characterized by performing scanning electron microscopy and dynamic light scattering. AGS and MCR-5 cell lines were treated with various concentration of nanosilver for 24, 48 and 72 hours. Finally, the cell viability was evaluated by using MTT assay. Results: The results show that the nanosilver exerts a dose-dependent inhibitory effect on viability of cells. At 100µg/mL of commercial and biological synthesized nanosilver, the viability of AGS was reduced to 7.47±0.002% (P=0.002) and 3.65±0.01% (P=0.003) after 72 hours, respectively. In addition, the viability of MRC-5 at the same condition was reduced to 10.27±0.19% (P=0.001) and 9.16±1.53% (P=0.002), respectively. Conclusion: Based on a thorough literature surveys, the present study is the first research about biosynthesis of nanosilver using Eucalyptus plant extract. This eco-friendly and cost effective method can be used for large scale production of silver nanoparticle. In addition, based on the current obtained data, commercial and biological synthesized nanosilver can more inhibitory effect on cancer cells compared to the normal cells. Hence, silver nanoparticles might be used as a new strategy for treating many human cancers. However, further studies are necessary to ascertain their potential as anticancer agents.
Arian Rahimi , Arash Arashkia , Amir Mirzaie , Hassan Noorbazargan , Seyed Ataollah Sadat Shandiz , Roghayeh Rahimi , Mehdi Mahdavi ,
Volume 73, Issue 9 (December 2015)
Abstract

Background: Human papilloma virus is a DNA virus from the papillomavirus family that is most prevalent in human cervical cancers and many studies showed the E6 and E7 proteins are present in the majority of cervical cancer cases. Development of universal HPV peptide-based vaccine with more serotypes coverage has considerable value. The aim of the study was to design a multi-epitope universal vaccine for major HPV based on E6 and E7 proteins and optimization the expression of polytopic construct contains E6 and E7 genes from different genotypes of human papilloma virus as a candid vaccine.

Methods: In this experimental study that was carried out in Pasteur Institute of Iran, Virology Department from October 2013 to November 2014. In order to design the polytypic construct, we predicted the most probable immunogenic epitopes of E6 and E7 from common high risk HPV16, 18, 31, 45 along with high prevalent type 6 and 11 using bioinformatics methods. The synthetic pET28a expression vector harboring E6 and E7 protein was transformed into Escherichia coli hosts and its expression was analyzed by SDS-PAGE and western blotting. Finally, in order to expression optimization of recombinant protein, cell density, induction time, growth temperature, IPTG (Isopropyl &beta-D-1-thiogalactopyranoside) concentration and cultures media were studied.

Results: In the present study the recombinant fusion protein was expressed successfully and the highest expression of target protein was achieved in super broth medium containing 0.1% glucose and 0.2% L-arabinose. In Super broth medium, the optimum condition for recombinant protein expression was occurred at OD600 of 0.8, 0.1mM IPTG, one hour’s incubation time at 37 °C and BL21 (A1) host.

Conclusion: The results of this study show that the optimum expression of E6 and E7 proteins from different genotypes of human papilloma virus can be performed. Moreover, by purification of recombinant protein and evaluation of its immunogenicity in mice, it can be used as a vaccine candidate against the human papilloma virus.


Amir Mirzaie , Seyed Ataollah Sadat Shandiz, Hassan Noorbazargan , Elahe Ali Asgary,
Volume 74, Issue 3 (June 2016)
Abstract

Background: Aloysia citrodora belongs to the Verbenaceae family of plants, a well-known herbal medicine in Iran. The aim of the present study was to investigate the chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effect of A. citrodora extract against human colon cancer (HT29) cells by using real-time polymerase chain reaction and flow-cytometry methods.

Methods: This experimental study was carried out in Islamic Azad University, East Tehran Branch, from March to September of 2014. At first, the A. citrodora chemical constituents were analyzed by gas chromatography-mass spectrometry (GC-MS) technique. In addition, antioxidant assay, antibacterial and anti-cancer effect was performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), disk diffusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively. The half maximal inhibitory concentration (IC50) value was calculated. We extracted total RNA molecules by using RNX solution, after which cDNA was synthesized. Finally, the pro-apoptotic (Bax) and anti-apoptotic (Bcl2) gene expression was performed by real-time polymerase chain reaction and apoptotic effects were analyzed using Flow-cytometry method.

Results: GC-MS analysis of Aloysia citrodora extract was shown 37 major components and the most frequent component was belonged to Spathulenol (17.57%) and Caryophyllene oxide (15.15%) The antioxidant activity of the extract was IC50= 0.6±0.03 mg/ml. The maximum and minimum antibacterial effects of extract were belonged to gram-negative and gram-positive bacteria, respectively. Cytotoxic results revealed that the A.citrodora extract have IC50= 20.1±0.78 mg/ml against colon cancer (HT29) cell line and real-time polymerase chain reaction results showed the expression level of Bax and Bcl2 was increased and decreased respectively in colon cancer cell line (3.470±0.72 (P< 0.05), 0.43±0.35 (P< 0.05)). In addition, the flow-cytometry results indicated the 38.66% apoptosis in colon cancer cell line.

Conclusion: According to the results, it seems that A. citrodora extract has potential antioxidant, antibacterial and anticancer effects and it suggested that further studies were performed for A. citrodora pharmaceutical importance.


Amir Mirzaie , Aliasghar Bagheri Kashtali , Hassan Sahebjamee , Hassan Noorbazargan , Hassan Rahmati , Seyed Ataollah Sadat Shandiz,
Volume 75, Issue 5 (August 2017)
Abstract

Background: Medicinal plants have been identified and used from prehistoric times and these plants make many chemical compounds for biological functions. Trifolium cherleri is an herbaceous species belonging to the family of the Fabaceae to Africa, Eurasia and Australia. T. cherleri is an important member of the Fabaceae family that is well-known herbal medicine in Iran. The aim of this study was to investigate the phytochemical composition, antibacterial and anti-cancer activities of T. cherleri extract.
Methods: This experimental study was performed in Islamic Azad University, from December 2016 to February 2017. At first, the phytochemical constituents of T. cherleri extract were determined using gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the antibacterial activity of the extract was evaluated against some gram positive and negative pathogenic bacteria included Staphylococcus aureus ATCC 25923, Streptococcus pyogenes ATCC 19615, Salmonella enteritidis ATCC 13076 and Listeria monocytogenes ATCC 35152 via minimum inhibitory concentration (MIC) method. Moreover, anticancer potential of extract was examined by colorimetric MTT assay toward lung cancer (A549) cell line. Then, the evaluation of caspase 3 and 9 apoptosis gene expression was determined using Real-Time Polymerase Chain Reaction (Real-Time PCR) technique. Moreover, the Real-Time PCR was performed using relative quantitative method.
Results: The phytochemical analyses of T. cherleri extract showed the 20 major components and the most frequent component was belonged to hexadecanoic acid, ethyl ester (20.7%) and 2-Pentadecanone, 6,10,14-trimethyl (19.9%). The extract had maximum antibacterial effects against Staphylococcus aureus and Streptococcus pyogenes. There was a dose dependent increase in the cytotoxicity effect of extract against A549 cancer cell. Moreover, the Real-Time PCR results indicated that the caspase 3 and caspase 9 gene expression was significantly up-regulated 2.57±0.27 (P<0.05), and 3.3±0.46 (P<0.05), respectively.
Conclusion: The results of this study showed that the T. cherleri extract had significant anti-bacterial and anti-cancer effects and it appear that the extract has potential uses for pharmaceutical industries. Moreover, it could be considered as a promising source for novel drug compounds, but more studies are needed.

Alireza Habibi, Seyed Ataollah Sadat Shandiz , Ali Salehzadeh, Zeinab Moradi-Shoeili,
Volume 78, Issue 7 (October 2020)
Abstract

Background: Lung cancer is a disease with high mortality rate that conventional drug treatments have not been successful in controlling it. The activity of iron chelators in various studies has been considered by scientists as a new treatment strategy. The primary objective of this study was to synthesize a novel Fe3O4 thiosemicarbazone complex and investigate its anti-proliferative activity against A549 cells of lung cancer.
Methods: This experimental study was carried out in Islamic Azad University of Rasht Branch, from September of 2018 to September 2019. First thiosemicarbazone (PTSC) was synthesized by the method of the condensation reaction of amine and aldehyde groups. Also, the Fe3O4 nanoparticulates were synthesized using the co-precipitation method in the presence of glutamic acid. Then, Fe3O4@Glu complex functionalized with bio-reactive PTSC moiety. Besides, morphological characteristics of Fe3O4@Glu/PTSC complex were determined by scanning electron microscope (SEM) images. The cell viability was detected in 62.5, 125, 250, 500, and 1000 µg/ml for treated cells with Fe3O4@Glu/PTSC complex via MTT assay. Changes of NDRG1 gene expression the level in treated cells were investigated via qRT-PCR analysis. Therefore, total RNA was extracted after culturing the cells and cDNA of NDRG1 and GAPDH genes as the study and control gene was obtained, respectively. Ultimately, the level of NDRG1 gene expression was compared with level of GAPDH mRNA expression via the 2– ΔΔCt method.
Results: SEM images confirmed the sphericality of the Fe3O4 @ Glu / PTSC complex. The size of the nanoparticles was uniform and about 52-23 nm. The cell survival assay (MTT) results revealed the anti-proliferative properties of this complex in a dose-dependent manner (IC50=135.6 µM/ml). In treated cells, the gene expression of NDRG1 was 1.8-fold higher after 12 h. However, after 24 hours of incubation, this gene was showed a 0.67-fold decrease in expression compared to the control group.
Conclusion: The results of the present study suggest that Fe3O4@Glu/PTSC nanoparticulates by a decrease of NDRG1 expression, exhibit effective anti-cancer activity against lung cancer cells.


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb