Showing 7 results for Shalbaf
Sanaz Jafari, Ahmad Shalbaf, Jamie Sleigh,
Volume 78, Issue 6 (September 2020)
Abstract
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia. Anesthesia disrupts the interaction between different regions of the brain, so brain connectivity between different areas can be a key factor in the anesthesia process. This study aims to determine the depth of anesthesia based on the EEG signal using the effective brain connectivity between frontal and temporal regions.
Methods: This study, which is done from April to December 2018 in Tehran, used EEG signals recorded from eight patients undergoing Propofol anesthesia at Waikato Hospital of New Zealand. In this study, effective brain connectivity in the frontal and temporal regions have been extracted by using various Granger causality methods, including directional transfer function, normalized directional transfer function, partial coherence, partial oriented coherence, and imaginary coherence. The extraction of effective connectivity indices in three modes (awake, anesthesia and recovery) was calculated using MATLAB software. The perceptron neural network is then used to automatically classify the anesthetic phases (Awake, Anesthesia, and recovery).
Results: The results show that the directional transfer function method has a high correlation coefficient with BIS in all cases. Also, the directional transfer function index due to faster response on the drug, low variability, and better ability to track the effect of Propofol works better than the BIS index as a commercial anesthetic depth monitor in clinical application. Also, when using an artificial neural network, our index has a better ability to automatically detect three anesthesia than the BIS index.
Conclusion: The directional transfer function between the pair of EEG signals in the frontal and temporal regions can effectively track the effect of Propofol and estimate the patient's anesthesia well compared to other effective connectivity indexes. It also works better than the BIS index in clinical centers.
|
Amir Hossein Jalalzadeh, Ahmad Shalbaf , Arash Maghsoudi,
Volume 78, Issue 10 (January 2021)
Abstract
Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively.
Methods: This study, which is done from March to December 2019 in Tehran, is evaluated on the available database of RetroSpective Evaluation of Cerebral Tumors (RESECT) including pre-operative MR images, and intra-operative ultrasound from 22 patients with low-grade gliomas who underwent surgeries at St. Olavs University Hospital. This study is used for image registration of preoperative MR imaging and ultrasound imaging after resection of the skull to compensate for brain changes. By this method, we obtained a third image that resembles preoperative MR imaging but has the geometry of the brain shape changes. We used a combination of the two transformations named Affine and non-rigid Free Form Deformation (FFD) for hierarchically moving the pixels to compensate for global variations, and also nonlinear local and small variations. Also, by applying the mutual information function, we consider the entropy value as the criterion of similarity due to the non-similarity of the nature of the images. Also, Limited Broyden-Fletcher-Goldfarb-Shannon method is used for optimization.
Results: The results of the proposed method were presented on the available database of RetroSpective Evaluation of Cerebral Tumors (RESECT) including images of 22 patients with glioma type 2 tumors and evaluated based on 15 landmarks per patient and also mutual information criteria. The mean target registration error for affine, FFD and the proposed method are 46.19, 42.85 and 38.01, respectively. It was shown that the proposed method achieved high accuracy by combining the two transformations of affine and FFD compared to the separate use of each of the two models.
Conclusion: In image registration of preoperative MR and ultrasound images for compensation of brain shift, the combination of affine and FFD transformations had better results than the individual use of each of the transformations. |
Amir Reza Naderi Yaghouti , Ahmad Shalbaf, Arash Maghsoudi,
Volume 79, Issue 1 (April 2021)
Abstract
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent classification method based on artificial intelligence methods to accurately detect the amount of liver fat is essential. This paper aims to develop an advanced machine learning model based on texture features to assess liver fat levels based on liver ultrasound images.
Methods: In this analytic study, which is done from April to November 2020 in Tehran, ultrasound images of 55 obese people who have undergone laparoscopic surgery have been used and the histological result of a liver biopsy has been employed as a reference for liver fat. First, 88 texture-based features were extracted from the images using the Gray-Level Co-Occurrence Matrix (GLCM) method. In the next step, using the method of minimum redundancy and maximum correlation, the top features were selected from among 88 features and applied to the classifier input. Finally, using the three classifiers of linear discriminant analysis, support vector machine and AdaBoost, the images were classified into 4 groups based on the amount of liver fat.
Results: The accuracy of the automatic liver fat prediction model from ultrasound images for AdaBoost classification was 92.72%. However, the accuracies obtained for support vector machine and linear discriminant analysis classification were 87.88% and 75.76%, respectively.
Conclusion: The proposed approach based on texture features using the GLCM and the AdaBoost classification from ultrasound images automatically detects the amount of liver fat with high accuracy and can help physicians and radiologists in the final diagnosis.
|
Hasan Mohammadi Kiani , Ahmad Shalbaf, Arash Maghsoudi,
Volume 79, Issue 2 (May 2021)
Abstract
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In this study, we intend to separate subjects with mild cognitive impairment from healthy control based on fMRI data using brain functional connectivity and graph theory.
Methods: In this article, which was done from April to November 2020 in Tehran, after pre-processing the fMRI data, 116 brain regions were extracted using an Automated Anatomical Labeling atlas. Then, the functional connectivity matrix between the time signals of 116 brain regions was calculated using Pearson correlation and mutual information methods. Using functional connectivity calculations, the brain graph network was formed, followed by thresholding of the brain connectivity network to keep significant and strong edges while eliminating weaker edges that were likely noise. Finally, 11 global features were extracted from the graph network and after performing statistical analyses and selecting optimal features; the classification of 14 healthy individuals and 11 patients with mild cognitive impairment was performed using a support vector machine classifier.
Results: Calculations were showed that the mutual information algorithm as a functional connectivity method and five global features of the graph network, including average strength, eccentricity, local efficiency, coefficient clustering and transitivity, using the support vector machine classifier achieved the best performance with the accuracy, sensitivity and specificity of 84, 86 and 93 percent, respectively.
|
Conclusion: Combining the features of brain graph and functional connectivity by the mutual information method with a machine learning approach, based on fMRI imaging analysis, is very effective in diagnosing mild cognitive impairment in the early stages of Alzheimer’s which consequently allows treating or delaying this disease.
Sara Bagherzadeh, Arash Maghsoudi, Ahmad Shalbaf,
Volume 79, Issue 10 (January 2022)
Abstract
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced deep learning algorithms.
Methods: In this analytic study, which is done from April to October 2021 in Tehran, 19-channel electroencephalogram signals from 14 schizophrenia patients and 14 healthy individuals were recorded and pre-processed. Then, the effective connectivity measure using the transfer entropy method is estimated from them and a 19×19 asymmetric connectivity matrix is constructed and represented by a color map as an image. Then, these effective connectivity images are used as inputs to the five pre-trained neural networks of AlexNet, Resnet-50, Shufflenet, Inception, and Xception. Finally, the parameters of these networks are fine-tuned to diagnose schizophrenia patients. All models are fine-tuned based on newly constructed images using the adaptive moment estimation optimizer algorithm and cross-entropy as the loss function. 10-fold cross-validation and subject-independent validation methods are used to evaluate the proposed method.
Results: The results of the study showed that the highest average accuracy, precision, sensitivity and F-score for classification of two classes of schizophrenia and healthy using the connectivity images and the Inception model achieved equal to 96.52%, 95.89%, 97.22% and 96.55%, respectively, in subject-independent validation method and 98.51%, 98.51%, 98.51% and 98.51% for the 10-fold cross-validation method. Also, there was less effective connectivity between schizophrenic patients than healthy individuals and these patients generally have much less information flow.
Conclusion: Based on our results, the proposed new model can effectively analyze brain function and be useful for psychiatrists to accurately diagnose schizophrenia patients and reduce the possible error and subsequently inappropriate treatment.
|
Ahmad Shalbaf , Nasrin Amini, Hadi Choubdar, Mahdi Mahdavi, Atefeh Abedini, Reza Lashgari,
Volume 79, Issue 12 (March 2022)
Abstract
Background: Early prediction of the outcome situation of COVID-19 patients can decrease mortality risk by assuring efficient resource allocation and treatment planning. This study introduces a very accurate and fast system for the prediction of COVID-19 outcomes using demographic, vital signs, and laboratory blood test data.
Methods: In this analytic study, which is done from May 2020 to June 2021 in Tehran, 41 features of 244 COVID-19 patients were recorded on the first day of admission to the Masih Daneshvari Hospital. These features were categorized into eight different groups, demographic and patient history features, vital signs, and six different groups of laboratory blood tests including complete blood count (CBC), coagulation, kidney, liver, blood gas, and general. In this study, first, the significance of each of the extracted features and then the eight groups of features for prediction of mortality outcomes were considered, separately. Finally, the best combination of different groups of features was assessed. The statistical methods including the area under the receiver operating characteristic curve (AUC-ROC) based on binary Logistic Regression classification algorithm were used for evaluation.
Results: The results revealed that red cell distribution width (RDW), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular volume (MCV) in CBC features have the highest AUC with values of 85.29, 80.96, 79.94 and 79.70, respectively. Then, blood oxygen saturation level (SPO2) in vital features has a higher AUC with a value of 79.28. Moreover, combinations of features in the CBC group have the highest AUC with a value of 95.57. Then, coagulation and vital signs groups have the highest AUC with values of 85.20 and 83.84, respectively. Finally, triple combinations of features in CBC, vital signs, and coagulation groups have the highest AUC with the value of 96.54.
Conclusion: Our proposed system can be used as an assistant acceptable tool for triage of COVID-19 patients to determine which patient will have a higher risk for hospitalization and intensive care in medical environments.
|
Mohsen Sadat Shahabi , Ahmad Shalbaf ,
Volume 82, Issue 2 (May 2024)
Abstract
Background: Major Depressive Disorder (MDD) is one of the most prevalent and disabling mental disorders in the world. Due to the life quality decline caused by this disease and its growing nature, timely detection and treatment is of paramount importance. In the present study Electroencephalogram (EEG) signal utilized for the precise detection of MDD using Artificial Intelligence (AI) Methods.
Methods: In this analytic study, which is done in Shahid Beheshti University of medical Sciences in 2023, fifty eight subjects were investigated using an experienced psychiatrist that 30 subjects diagnosed as MDD and 28 determined to be healthy. Nineteen channels EEG signals in resting state with eyes closed situation acquired for five minutes from all of the participants including 36 men and 22 women with the average age of 39.3 years. The EEG signals were preprocessed to remove contaminating signals from brain-originated signals. The EEGLAB package in MATLAB utilized to re-reference channels to the average reference, apply a band-pass filter between 1 and 40 Hz and to remove non-brain components of the signal using Independent Component Analysis (ICA). The cleaned data segmented to the three seconds windows with 50 percent overlapping. These segments were used as the input to the AI models. Deep Learning (DL) models utilized in the present study were EEGNet, ShallowConvNet and DeepConvNet which were developed based on the deep convolutional models for the classification of healthy and MDD brain signals. The main difference between these models laid in the number of specific convolutional layers and the model complexity.
Results: MDD and Healthy signals classification has been done using EEGNet, ShallowConvNet and DeepConvNet models and accuracy of 92.3%, 83.2% and 92.2% were achieved, respectively. Also EEGNet acquired the highest sensitivity of 98.9% and specificity of 79.1%.
Conclusion: The detection of MDD patients using EEG signals with high accuracy and generalizability is possible and proposed AI models can be utilized in the clinical settings as assistant tools.
|