Search published articles


Showing 4 results for Anti-Bacterial Agents

Mitra Gholami , Shahram Nazari , Mahdi Farzadkia , Seyed Mohsen Mohseni , Soudabeh Alizadeh Matboo, Fakhraddin Akbari Dourbash , Meysam Hasannejad ,
Volume 74, Issue 1 (4-2016)
Abstract

Background: Nano scale dendrimers are macromolecules synthetic which frequently used in medical and health field. Because traditional antibiotics inevitably induce bacterial resistance, which is responsible for many treatment failures, there is an urgent need to develop novel antibiotic drugs. This study was aimed to examine Synthesis and the antibacterial effect of NanoPolyamidoamine-G7 (NPAMAM-G7) dendrimer on Escherichia Coli, Proteus Mirabilis, Salmonella Typhi, Bacillus Subtilis and Staphylococcus Aureus.

Methods: In this experimental study that has been conducted in June 2015 in the Laboratory of Microbiology, Iran University of Medical Science, NPAMAM-G7 dendrimers was synthesized by Tomalia’s divergent growth approach. The antibacterial effects of NPAMAM-G7 dendrimer were studied by disc diffusion and micro-dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against gram-positive and gram-negative bacteria were determined according to Clinical and Laboratory Standards Institute (CLSI) guideline. Standard discs were prepared using different concentrations of dendrimer on Mueller-Hinton agar plates.

Results: Zone of inhibition in concentration 25 μg/ml of NPAMAM-G7 dendrimers for Escherichia Coli, Proteus Mirabilis, Salmonella Typhi, Bacillus Subtilis and Staphylococcus Aureus were 26, 38, 36, 22 and 25 mm, respectively. Regarding the zone of inhibition in gram negative bacteria with gram positive ones was P= 0.16 and was not significant difference. The MIC for Salmonella Typhi was 0.025, for Proteus Mirabilis, Bacillus Subtilis, Staphylococcus Aureus and Escherichia Coli was 0.25 μg/ml. The MBC for Salmonella Typhi was 25μg/ml, for Proteus Mirabilis and Bacillus Subtilis was 50 μg/ml and for Escherichia Coli and Staphylococcus Aureus was 100 μg/ml. The least of sensitivity against NPAMAM-G7 related to Escherichia Coli and Staphylococcus Aureus and the most of sensitivity related to Salmonella Typhi.

Conclusion: The NPAMAM-G7 dendrimer with end amine groups exhibited a positive impact on the removal of standard strains, gram-positive and gram-negative bacteria. Therefore, it is possible to use these nanodendrimers as antibacterial in the future.


Mitra Gholami , Shahram Nazari , Mahdi Farzadkia , Gharib Majidi , Soudabeh Alizadeh Matboo ,
Volume 74, Issue 3 (6-2016)
Abstract

Background: Poly(amidoamine) (PAMAM) dendrimer derivatives have been investigated for their biological applications, especially for delivery of drugs, including antimicrobial drugs to eukaryotic cells, but their effects on bacterial cells are largely unexplored. Nanotechnology and its application is one of the rapidly developing sciences. As demand of fresh drinking water is increasing, nanotechnology can contribute noticeable development and improvement to water treatment process. This study was aimed to examine synthesis and the antibacterial effect of Nanopolyamidoamine-G7 (NPAMAM-G7) dendrimer on Escherichia Coli (E. Coli), Klebsiella Oxytoca (K. Oxytoca), Pseudomonas Aeruginosa (P. Aeruginosa), Proteus Mirabilis (P. Mirabilis) and Staphylococcus Aureus (S. Aureus) from aqueous solution.
Methods: In this experimental study that has been conducted in August to December 2015 in the laboratory of microbiology of Iran University of Medical Sciences, initially dilution of 103 CFU/ml were prepared from each strain of bacteria. Then different concentrations of dendrimer (0.025, 0.25, 2.5 and 25 µg/ml) in the laboratory temperature (23-25 °C) was added to water. In order to determine the efficiency of dendrimers in removal of bacteria, samples were taken at different times (0, 10, 20, 30, 40, 50 and 60 min) and were cultured on nutrient agar medium. Samples were incubated for 24 hours at 37 °C and then number of colonies were counted.
Results: Antibacterial properties of dendrimers in aqueous solution by increasing the dendrimer concentration and contact time is directly related. At a concentration of 25 μg/ml at 60 minutes all bacteria except S. Aureus, and at 30 minutes, E. Coli and K. Oxytoca bacteria for 100% excluded. The concentration of 2.5 μg/ml at 60 minutes of bacteria, E. Coli, K. Oxytoca and P. Mirabilis are 100% excluded. All concentrations of dendrimers at different times were reduced bacteria in the PAMAM- G7 dendrimer effect on gram-negative bacteria, gram-positive bacteria was better.
Conclusion: The NPAMAM-G7 dendrimer with end amine groups exhibited a positive impact on the removal of standard strains, gram-positive and gram-negative bacteria. Therefore, it is possible to use these nanodendrimers as antibacterial in the future.


Amir Mirzaie , Aliasghar Bagheri Kashtali , Hassan Sahebjamee , Hassan Noorbazargan , Hassan Rahmati , Seyed Ataollah Sadat Shandiz,
Volume 75, Issue 5 (8-2017)
Abstract

Background: Medicinal plants have been identified and used from prehistoric times and these plants make many chemical compounds for biological functions. Trifolium cherleri is an herbaceous species belonging to the family of the Fabaceae to Africa, Eurasia and Australia. T. cherleri is an important member of the Fabaceae family that is well-known herbal medicine in Iran. The aim of this study was to investigate the phytochemical composition, antibacterial and anti-cancer activities of T. cherleri extract.
Methods: This experimental study was performed in Islamic Azad University, from December 2016 to February 2017. At first, the phytochemical constituents of T. cherleri extract were determined using gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the antibacterial activity of the extract was evaluated against some gram positive and negative pathogenic bacteria included Staphylococcus aureus ATCC 25923, Streptococcus pyogenes ATCC 19615, Salmonella enteritidis ATCC 13076 and Listeria monocytogenes ATCC 35152 via minimum inhibitory concentration (MIC) method. Moreover, anticancer potential of extract was examined by colorimetric MTT assay toward lung cancer (A549) cell line. Then, the evaluation of caspase 3 and 9 apoptosis gene expression was determined using Real-Time Polymerase Chain Reaction (Real-Time PCR) technique. Moreover, the Real-Time PCR was performed using relative quantitative method.
Results: The phytochemical analyses of T. cherleri extract showed the 20 major components and the most frequent component was belonged to hexadecanoic acid, ethyl ester (20.7%) and 2-Pentadecanone, 6,10,14-trimethyl (19.9%). The extract had maximum antibacterial effects against Staphylococcus aureus and Streptococcus pyogenes. There was a dose dependent increase in the cytotoxicity effect of extract against A549 cancer cell. Moreover, the Real-Time PCR results indicated that the caspase 3 and caspase 9 gene expression was significantly up-regulated 2.57±0.27 (P<0.05), and 3.3±0.46 (P<0.05), respectively.
Conclusion: The results of this study showed that the T. cherleri extract had significant anti-bacterial and anti-cancer effects and it appear that the extract has potential uses for pharmaceutical industries. Moreover, it could be considered as a promising source for novel drug compounds, but more studies are needed.

Azadeh Vahedi , Akram Baghani , Zohre Baseri , Mohammad Reza Pourmand ,
Volume 75, Issue 12 (3-2018)
Abstract

Background: Bloodstream infections are the most important causes of morbidity and mortality in hospitalized patients. Blood culture plays an important role in identifying most of bacterial agents of bloodstream infections. Knowledge about bacterial agents of bloodstream infections and also antibiotic resistance of these bacteria are important. Antibiotic resistance among bacterial agents of bloodstream infection including Acinetobacter, Klebisella, Pseudomonas, Escherichia coli, Enterobacter, Enterococcus, Staphylococcus aureus and Staphylococcus coagulase negative (CoNS) is one of the major challenges faced by physicians in treating. Therefore, this study was aimed to determine the frequency and antibiotic resistant patterns of bacterial isolates from hospitalized patient's blood cultured samples in the hospital, Tehran, Iran.
Methods: This research is a descriptive and retrospective study based on recorded data in Shariati hospital laboratory and under the supervision of Tehran University of Medical Sciences. The bacterial isolates were collected from positive blood cultures from October 2013 to March 2014. The frequency of bacterial isolates were determined by phenotypic and biochemical tests. The antibiotic resistance patterns of isolated bacteria were found by disk diffusion agar method. The diameters of inhibition zone were recorded and interpreted according to Clinical and Laboratory Standards Institute (CLSI) 2013.
Results: The frequency of bacterial isolates was determined among 595 positive blood cultures as followed: 41% Pseudomonas, 20% Staphylococcus epidermidis, 10% Escherichia coli, 6% Acinetobacter lwoffii, 6% Staphylococcus aureus, 5% Stenotrophomonas, 3% Acinetobacter baumannii. The antibiogram test showed that 96.2% of Acinetobacter lwoffii, 92.8% of Acinetobacter baumannii, 66% of Pseudomonas aeruginosa, 85.7% of Staphylococcus epidermidis, 65% of Staphylococcus aureus, 75% of Klebsiella, 73.7% of Escherichia coli, and 50% of Stenotrophomonas were resistant to imipenem, piperacillin, piperacillin, erythromycin, erythromycin, ciprofloxacin, trimethoprim-sulfamethoxazole, and ceftazidime respectively.
Conclusion: The most prevalent bacterial isolate among the blood cultures of patients was Pseudomonas. The patients more than 50 years were more susceptible to blood stream infections. The most bacteria were isolated from the internal medicine department of hospital. The antibiotic resistance was also increasing especially in Acinetobacter, Staphylococcus coagulase negative, Escherichia coil and Klebsiella


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb