Search published articles


Showing 2 results for Artificial Neural Network

Ashrafi M, Hamidi Beheshti Mt, Shahidi Sh, Ashrafi F,
Volume 67, Issue 5 (8-2009)
Abstract

Background: Kidney transplantation had been evaluated in some researches in Iran mainly with clinical approach. In this research we evaluated graft survival in kidney recipients and factors impacting on survival rate. Artificial neural networks have a good ability in modeling complex relationships, so we used this ability to demonstrate a model for prediction of 5yr graft survival after kidney transplantation.
Methods: This retrospective study was done on 316 kidney transplants from 1984 through 2006 in Isfahan. Graft survival was calculated by Kaplan-meire method. Cox regression and artificial neural networks were used for constructing a model for prediction of graft survival.
Results: Body mass index (BMI) and type of transplantation (living/cadaver) had significant effects on graft survival in cox regression model. Effective variables in neural network model were recipient age, recipient BMI, type of transplantation and donor age. One year, 3 year and 5 year graft survival was 96%, 93% and 90% respectively. Suggested artificial neural network model had good accuracy (72%) with the area under the Receiver-Operating Characteristic (ROC) curve 0.736 and appropriate results in goodness of fit test (κ2=33.924). Sensitivity of model in identification of true positive situations was more than false negative situations (72% Vs 61%).
Conclusion: Graft survival in living donors was more than cadaver donors. Graft survival decreased when the BMI increased at transplantation time. In traditional statistical approach Cox regression analysis is used in survival analysis, this research shows that artificial neural networks also can be used in constructing models to predict graft survival in kidney transplantation.


Mansour Rezaei, Negin Fakhri , Fateme Rajati , Soodeh Shahsavari ,
Volume 77, Issue 6 (9-2019)
Abstract

Background: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, which is associated with serious complications. In the event of early diagnosis of this disease, some of the maternal and fetal complications can be prevented. The aim of this study was to early predict gestational diabetes mellitus by two statistical models including artificial neural network (ANN) and decision tree and also comparing these models in the diagnosis of GDM.
Methods: In this modeling study, among the cases of pregnant women who were monitored by health care centers of Kermanshah City, Iran, from 2010 to 2012, four hundred cases were selected, therefore the information in these cases was analyzed in this study. Demographic information, mother's maternal pregnancy rating, having diabetes at the beginning of pregnancy, fertility parameters and biochemical test results of mothers was collected from their records. Perceptron ANN and decision tree with CART algorithm models were fitted to the data and those performances were compared. According to the accuracy, sensitivity, specificity criteria and surface under the receiver operating characteristic (ROC) curve (AUC), the superior model was introduced.
Results: Following the fitting of an artificial neural network and decision tree models to data set, the following results were obtained. The accuracy, sensitivity, specificity and area under the ROC curve were calculated for both models. All of these values were more in the neural network model than the decision tree model. The accuracy criterion for these models was 0.83, 0.77, the sensitivity 0.62, 0.56 and specificity 0.95, 0.87, respectively. The surface under the ROC curve in ANN model was significantly higher than decision tree (0.79, 0.74, P=0.03).
Conclusion: In predicting and categorizing the presence and absence of gestational diabetes mellitus, the artificial neural network model had a higher accuracy, sensitivity, specificity, and surface under the receiver operating characteristic curve than the decision tree model. It can be concluded that the perceptron artificial neural network model has better predictions and closer to reality than the decision tree model.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb