Results: The proposed deep learning network achieved an AUC (area under the ROC curve) of 0.97. Using a confidence score threshold of 0.5, a classification accuracy of 90% was attained in the classification of images into malignant and benign lesions. Moreover, a sensitivity of 94% and specificity of 86% were obtained. It should be noted that the user can change the threshold to adjust the model performance based on preference. For example, reducing the threshold increase sensitivity while decreasing specificity.
Conclusion: The results highlight the efficacy of deep learning models in detecting non-melanoma skin cancer. This approach can be employed in computer-aided detection systems to assist dermatologists in identification of malignant lesions. |
Proper training of a DL‑based CAD requires a large amount of annotated mammogram data, where cancerous lesions have been marked by an experienced radiologist. This highlights the importance of establishing a large, annotated mammogram dataset for the development of a reliable CAD system. This article provides a brief review of the state‑of‑the‑art techniques for DL‑based CAD in mammography. |
Results: The proposed model estimated the Dice Similarity Coefficient (DSC) results in HGG datasets 0.85, 0.85, 0.77, LGG datasets 0.80, 0.66, 0.51, and the combination of the two groups 0.88, 0.79, 0.77 for regions the whole tumor, tumor core, and enhancing region in the training dataset, respectively. The results related to Hussdorf Distance (HD) for HGG datasets were 8.24, 9.92, 4.43, LGG datasets 11.5, 11.31, 2.23, and the combination of the two groups 7.20, 8.82, 4.43 for regions the whole tumor, tumor core, and enhancing region in the training dataset, respectively.
Conclusion: Using the U-Net network can help physicians in the accurate segmentation of the tumor and its various areas, as well as increase the survival rate of these patients and improve their quality of life through accurate diagnosis and early treatment. |
Results: Three channels were selected as the best ones for nine subjects. To separate 8-30 Hz, a 5th degree Butterworth filter was used. After finding the optimal parameters in the proposed networks, wavelet transform with Cgauss mother wavelet has the highest percentage in the both proposed architectures. Two-dimensional convolutional neural network has higher convergence speed, higher accuracy and more complexity of calculations. In terms of accuracy, precision, sensitivity and F1-score, two-dimensional convolutional neural network has performed better than one-dimensional convolutional neural network. The accuracy of 92.53%, which is obtained from the second architecture, as the best result, is reported.
Conclusion: The results obtained from the proposed network indicate that suitable, and well-designed deep learning networks can be utilized as an accurate tool for data classification in application of motion perception. |
Page 1 from 1 |
© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0
Designed & Developed by : Yektaweb