Search published articles


Showing 2 results for Gene Transfer Techniques

Ali Hosseini Bereshneh , Danesh Soltani , Reza Roodbarani , Mohammad Hossein Modarressi ,
Volume 74, Issue 2 (5-2016)
Abstract

Stem cells are undifferentiated and multi pluripotent cells which can differentiate into a variety of mature cells and tissues such as nervous tissue, muscle tissue, epithelial tissue, skeletal tissue and etc. Stem cells from all different source have three unique features: 1) Proliferative capability: Stem cells are capable of self dividing and self renewing for long periods or more than six months at least that called immortalization. 2) Undifferentiated nature: It’s considered as one of the essential characteristics of stem cell, so it doesn't have any tissue-specific construction. 3) Differentiation to the different cells from all organs: This ability can Induced by tissue specific transcription factors. Because of that, they are so important in prevention and treatment of human disease. Depending on the sources from which they derive, they have different types which can be used to produce special cells and tissues. The most significant types of stem cells are; embryonic stem cells (ESCs) which are derived from embryos, adult stem cells (ASCs) which are derived from differentiated cells in a specific tissue, induced pluripotent stem cells (iPSs) which are produced from adult differentiated cells that have been genetically reprogrammed to act resemble to an embryonic stem cell and cord blood stem cells which contains haematopoietic stem cells and derived from the umbilical cord after gestation. By providing a medium containing of special growth factor, it is possible to orientated stem cell differentiation pathway and gained certain cells from them. The important uses of stem cells includes damaged heart tissue cells improvements and bone tissue repairing, cancer treatment, damaged neurological and spinal tissue repairing, improving burns and injuries and the treatment of diabetes, infertility and spermatogenesis dysfunction. Furthermore, the application of them in gene therapy is an important issue in the modern medicine science due to the role of them in transferring gene into different cells. Today, this method have had considerable progress in the treatment of many disease. In this review study, some aspect of stem cells like types and characteristic, origin, derivation techniques, storage conditions and differentiation to target tissues, current clinical usage and their therapeutic capabilities will be discussed.


Mohammad Hasan Jafari Najaf Abadi , Saeedeh Askarian, Reza Kazemi Oskuee , Bizhan Malaekeh-Nikouei, Mehdi Rezaee, Seyed Hamid Aghaee-Bakhtiari ,
Volume 78, Issue 5 (8-2020)
Abstract

Background: Non-viral Nano carriers such as liposomes and cationic polymers based on engineered properties are regarded in gene delivery field. Although these carriers do not have weaknesses of viral vectors, but they are less efficient than viruses and they still need to be improved as favorable gene delivery carriers. Amongst non-viral carriers, cationic liposomes have been proposed for clinical applications, but limitations such as low nucleic acid transfer and endosome escape and conduction of plasmid to the nucleus have challenged their use in clinical trials. Therefore, the combination of liposomes and cationic polymers for nucleic acid transfer has been considered because this approach makes it possible to use the desirable properties of liposomes and polymers so that it is even suggested for the gene treatment of some diseases such as Parkinson's. In this study, a combination of liposomes and cationic polymers were used for the preparation of lipopolyplexes. This approach allows simultaneous utilizing of the desirable properties of liposomes and polymers.
Methods: This interventional-experimental study was conducted in the medical faculty of Mashhad University of Medical Sciences from April 2017 to February 2018. In this study, PEI-based lipopolyplex with a molecular weight of 25 and 10 kDa and a liposome-to-polymer ratio of 1:1 were combined with plasmid containing the GFP (Green Fluorescent Protein) marker. The physicochemical properties of the synthesized carriers such as size, cytotoxicity and gene transferability in human prostate cancer (PC3) cells were evaluated.
Results: The prepared lipopolyplex were 104 nm in size and all the lipopolyplexes were able to enhance transfection in the C/P=0.4 compared with its basic carriers (PEI and liposomes) alone, while showing less cytotoxicity than not manipulated liposomes. The results of this study suggest synthesized nanoparticles as nanocomposites for gene delivery purposes to different cells and in in-body studies.
Conclusion: The results of this study show that the lipopolyplex constructed from combination of PEI and liposomes can efficiently transfer the gene to the cell, while showing low cytotoxicity and appropriate size at the nano-scale. Therefore, this lipopolymer can be suggested for gene delivery purposes to different cells and in vivo targets.
 


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb