Search published articles


Showing 3 results for Image Processing

Parsa Hosseini M, Soltanian-Zadeh H, Akhlaghpoor Sh, Jalali A, Bakhshayesh Karam M,
Volume 70, Issue 4 (7-2012)
Abstract

Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest computed tomography (CT) images.

Methods: Twenty-five adult patients with lung nodules in their CT scan images presented to the National Research Institute of Tuberculosis and Lung Disease, Masih Daneshvari Hospital, Tehran, Iran in 2011-2012 were enrolled in the study. The patients were randomly assigned into two experimental (9 female, 6 male, mean age 43±5.63 yrs) and control (6 female, 4 male, mean age 39±4.91 yrs) groups. A fully-automatic method was developed for detecting lung nodules by employing medical image processing and analysis and statistical pattern recognition algorithms.

Results: Using segmentation methods, the lung parenchyma was extracted from 2-D CT images. Then, candidate regions were labeled in pseudo-color images. In the next step, some features of lung nodules were extracted. Finally, an artificial feed forward neural network was used for classification of nodules.

Conclusion: Considering the complexity and different shapes of lung nodules and large number of CT images to evaluate, finding lung nodules are difficult and time consuming for physicians and include human error. Experimental results showed the accuracy of the proposed method to be appropriate (P<0.05) for lung nodule detection.


Amir Hossein Jalalzadeh, Ahmad Shalbaf , Arash Maghsoudi,
Volume 78, Issue 10 (1-2021)
Abstract

Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively.
Methods: This study, which is done from March to December 2019 in Tehran, is evaluated on the available database of RetroSpective Evaluation of Cerebral Tumors (RESECT) including pre-operative MR images, and intra-operative ultrasound from 22 patients with low-grade gliomas who underwent surgeries at St. Olavs University Hospital. This study is used for image registration of preoperative MR imaging and ultrasound imaging after resection of the skull to compensate for brain changes. By this method, we obtained a third image that resembles preoperative MR imaging but has the geometry of the brain shape changes. We used a combination of the two transformations named Affine and non-rigid Free Form Deformation (FFD) for hierarchically moving the pixels to compensate for global variations, and also nonlinear local and small variations. Also, by applying the mutual information function, we consider the entropy value as the criterion of similarity due to the non-similarity of the nature of the images. Also, Limited Broyden-Fletcher-Goldfarb-Shannon method is used for optimization.
Results: The results of the proposed method were presented on the available database of RetroSpective Evaluation of Cerebral Tumors (RESECT) including images of 22 patients with glioma type 2 tumors and evaluated based on 15 landmarks per patient and also mutual information criteria. The mean target registration error for affine, FFD and the proposed method are 46.19, 42.85 and 38.01, respectively. It was shown that the proposed method achieved high accuracy by combining the two transformations of affine and FFD compared to the separate use of each of the two models.
Conclusion: In image registration of preoperative MR and ultrasound images for compensation of brain shift, the combination of affine and FFD transformations had better results than the individual use of each of the transformations.

Amir Reza Naderi Yaghouti , Ahmad Shalbaf, Arash Maghsoudi,
Volume 79, Issue 1 (4-2021)
Abstract

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent classification method based on artificial intelligence methods to accurately detect the amount of liver fat is essential. This paper aims to develop an advanced machine learning model based on texture features to assess liver fat levels based on liver ultrasound images.
Methods: In this analytic study, which is done from April to November 2020 in Tehran, ultrasound images of 55 obese people who have undergone laparoscopic surgery have been used and the histological result of a liver biopsy has been employed as a reference for liver fat. First, 88 texture-based features were extracted from the images using the Gray-Level Co-Occurrence Matrix (GLCM) method. In the next step, using the method of minimum redundancy and maximum correlation, the top features were selected from among 88 features and applied to the classifier input. Finally, using the three classifiers of linear discriminant analysis, support vector machine and AdaBoost, the images were classified into 4 groups based on the amount of liver fat.
Results: The accuracy of the automatic liver fat prediction model from ultrasound images for AdaBoost classification was 92.72%. However, the accuracies obtained for support vector machine and linear discriminant analysis classification were 87.88% and 75.76%, respectively.
Conclusion: The proposed approach based on texture features using the GLCM and the AdaBoost classification from ultrasound images automatically detects the amount of liver fat with high accuracy and can help physicians and radiologists in the final diagnosis.


Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb