Search published articles


Showing 2 results for Medical Informatics

Mohammad Karim Sohrabi , Alireza Tajik ,
Volume 73, Issue 12 (3-2016)
Abstract

Background: Warfarin is one of the most common oral anticoagulant, which role is to prevent the clots. The dose of this medicine is very important because changes can be dangerous for patients. Diagnosis is difficult for physicians because increase and decrease in use of warfarin is so dangerous for patients. Identifying the clinical and genetic features involved in determining dose could be useful to predict using data mining techniques. The aim of this paper is to provide a convenient way to select the clinical and genetic features to determine the dose of warfarin using artificial neural networks (ANN) and evaluate it in order to predict the dose patients.

Methods: This experimental study, was investigate from April to May 2014 on 552 patients in Tehran Heart Center Hospital (THC) candidates for warfarin anticoagulant therapy within the international normalized ratio (INR) therapeutic target. Factors affecting the dose include clinical characteristics and genetic extracted, and different methods of feature selection based on genetic algorithm and particle swarm optimization (PSO) and evaluation function neural networks in MATLAB (MathWorks, MA, USA), were performed.

Results: Between algorithms used, particle swarm optimization algorithm accuracy was more appropriate, for the mean square error (MSE), root mean square error (RMSE) and mean absolute error (MAE) were 0.0262, 0.1621 and 0.1164, respectively.

Conclusion: In this article, the most important characteristics were identified using methods of feature selection and the stable dose had been predicted based on artificial neural networks. The output is acceptable and with less features, it is possible to achieve the prediction warfarin dose accurately. Since the prescribed dose for the patients is important, the output of the obtained model can be used as a decision support system.


Sara Dorri , Alireza Atashi , Safoura Dorri , Ebrahim Abbasi , Mohsen Alijani-Zamani , Najme Nazeri ,
Volume 74, Issue 10 (1-2017)
Abstract

Background: There is no need to explain the importance of collection, recording and analyzing the information of disease in any health organization. In this regard, systematic design of standard data sets can be helpful to record uniform and consistent information. It can create interoperability between health care systems. The main purpose of this study was design the core dataset to record colorectal cancer information in Iran.

Methods: For the design of the colorectal cancer core data set, a combination of literature review and expert consensus were used. In the first phase, the draft of the data set was designed based on colorectal cancer literature review and comparative studies. Then, in the second phase, this data set was evaluated by experts from different discipline such as medical informatics, oncology and surgery. Their comments and opinion were taken. In the third phase refined data set, was evaluated again by experts and eventually data set was proposed.

Results: In first phase, based on the literature review, a draft set of 85 data elements was designed. In the second phase this data set was evaluated by experts and supplementary information was offered by professionals in subgroups especially in treatment part. In this phase the number of elements totally were arrived to 93 numbers. In the third phase, evaluation was conducted by experts and finally this dataset was designed in five main parts including: demographic information, diagnostic information, treatment information, clinical status assessment information, and clinical trial information.

Conclusion: In this study the comprehensive core data set of colorectal cancer was designed. This dataset in the field of collecting colorectal cancer information can be useful through facilitating exchange of health information. Designing such data set for similar disease can help providers to collect standard data from patients and can accelerate retrieval from storage systems.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb