Search published articles


Showing 9 results for Mesenchymal Stem Cells

M Soleimani, S Nadri , R Izadpanah ,
Volume 66, Issue 4 (7-2008)
Abstract

Background: MSCs have been isolated from a variety of mammals by the plastic adherence method. However, this method can be problematic due to the unwanted growth of hematopoietic cells and non-MSCs. The potential of MSCs to differentiate along multiple lineages is the key to the identification of stem cell populations in the absence of molecular markers. In the present study, we describe a homogeneous population of MSCs from mouse bone marrow isolated using an improved plastic adherence method that employs frequent medium change (FMC) at the initial hours of harvested bone marrow cell culture.
Methods: Balb/c mice were sacrificed and whole bone marrow cells were aspirated from the femur and tibia and then cultivated in six-well plates. After 3-4 hours of culture, old medium was removed and fresh medium was added. FMC was performed every eight hours over a 72 hour period. When primary cultures became nearly confluent, the first passage was performed. These cells were then used for further examination. To investigate their mesenchymal nature, the cells were allowed to differentiate into mesenchymal lineages and examined at each passage up to the tenth passage for surface antigens by flow cytometry.
Results: We achieved purified populations of fibroblast-like cells in the two weeks after culture initiation. The cells were capable of differentiating into osteocytes and adipocytes. Isolated MSCs were reactive to the CD44, Sca-1, and CD90 cell surface markers. MSCs were negative for hematopoietic surface markers such as CD34, CD11b, CD45, CD31, CD106, CD117 and CD135.
Conclusions: This protocol provides an efficient isolation of homogeneous populations of MSCs from mouse bone marrow.
Nemati Sh, Zare Mehrjerdi N, Baharvand H,
Volume 67, Issue 8 (11-2009)
Abstract

Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background: Human bone marrow mesenchymal stem cells (hMSCs) can differentiate into several types of mesenchymal cells, including osteocytes, chondrocytes, and adipocytes, but can also differentiate into non-mesenchymal cells, such as neural cells, under appropriate experimental conditions. Until now, many protocols for inducing neuro-differentiation in MSCs in vitro have been reported. In this study, we induced differentiation into neural phenotype in the hMSCs population by new protocol. In this treatment, hMSCs could express neural markers more than other reports, associating with remarkable morphological modifications. 
Methods: The Bone marrow specimens were aspirated from the iliac crest of normal men. hMSCs were isolated and cultured in DMEM containing 15% FBS. Between 4-8 passages conversion of hMSCs into neurosphere-like structures and induction this cells to nerve precursors in the low-attachment plastic bacterial dishes with bFGF, EGF & RA were initiated. After seven days terminal neural differentiation was initiated by plating the cells on poly-L-ornithin and Laminin coated dishes. Cells were differentiated for 7-14 days. We used flowcytometry and immunocytochemistry analysis for assessment of specific neural stem cell markers in induced cells.
Results: Flowcytometery analysis showed that after induction, 90±2.52 percent of the cells will express neuronal marker Nestin and about 41±1 percent of the cells will express Tuj-1 and about 67±1.05 percent of the cells will express GFAP. Immunocytochemistry and morphologically modifications revealed the same results.
Conclusion: Results showed that hMSCs treatment with bFGF, EGF & RA the number of Tuj1 neurons. These data confirmed that hMSCs can exhibit neuronal differentiation potential in vitro, depending on the protocols of inducement.


Mahdieh Ghiasi , Reza Tabatabaei Qomi , Mohsen Nikbakht , Mohsen Sheykhhasan ,
Volume 73, Issue 3 (6-2015)
Abstract

Background: Stem cells represent an ideal cell source for application in tissue engineering and regenerative medicine due to their ability to proliferate and differentiate to a wide variety of cell lineages. With recent development of medical sciences and tissue engineering, usage of adipose-derived mesenchymal stem cells, their culture and differentiation on suitable scaffolds are considered as a successful clinical and research strategy. One of the most crucial factors in a successful tissue engineering technique is to choose an appropriate scaffold which allow cell migration transferring of bioactive factors as well as providing optimal growth environment for stem cells. In this study, the ability of two scaffolds is investigated as a suitable environment for the proliferation and differentiation of adipose-derived mesenchymal stem cells. Methods: This is an in vitro study that was performed in Laboratory of Stem Cell in Academic Center for Education, Culture and Research, Qom province from April 2013 to February 2014. In this study, two scaffolds including fibrin glue and alginate were prepared as two separate groups and after isolating mesenchymal stem cells from adipose tissue and adequate proliferation, they were seeded into each scaffold in chondrogenic medium. After 14 days, the evaluation of viability and gene expression of collagen II and I, SOX9 and aggrecan were done by MTT (3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H tetrazolium bromide) assay and real-time PCR technique respectively. Also, cartilaginous tissue formation on scaffolds was evaluated by histological analysis. Results: According to the obtained results, the fibrin glue scaffold showed significant difference in terms of viability in comparison to alginate scaffold in chondrocyte differentiating medium (P< 0.05). Also the results of real-time PCR analysis showed that the fibrin glue scaffold express cartilage specific genes at a higher level than alginate scaffold. Conclusion: The use of natural fibrin glue scaffold can be considered as a suitable environment for proliferation and differentiation of adipose-derived mesenchymal stem cells in cartilage tissue engineering.
Reza Habibian , Nowruz Delirezh , Amir Abbas Farshid ,
Volume 73, Issue 5 (8-2015)
Abstract

Background: Allergic Asthma is an inflammatory disease of the respiratory system that is well known by increased inflammatory cells in the airways and causes difficulty in respiration. The prevalence of allergic asthma is increasing worldwide, and it has become a significant cause of health challenge especially in developed countries. Inhaled β2-agonists and Inhaled or oral corticosteroids are common medications for treating the disease, but they cannot be used for long periods of time because of frequently occurring side effects and they can’t change the main pathogenesis of the problem. Deficiency in regulatory system against inflammation could be an important factor in allergic asthma. Mesenchymal stem cells (MSCs) have potential of cellular immunosuppressive therapy of inflammatory disorders. The aim of present study was to evaluate the effects of MSC therapy on mechanisms of allergic asthma in mice model. Methods: This experimental study was conducted from August 2014 to March 2015. The animals were housed and maintained in Biotechnology Center of Urmia University, Iran. Mice were sensitized by intra-peritoneal injection of ovalbumin (OVA) and aluminum hydroxide emulsion and then were challenged intra-nasally with OVA. Before allergen challenge on day 14, experimental mice received tail vein injection of MSCs in PBS. Regulatory T cells of spleen, cytokines and IgE analysis were carried out using lungs wash as well as serum samples. Results: Our results showed that MSCs significantly reduced total cells and eosinophilia, serum OVA-specific IgE concentration in OVA-sensitized and challenged mice. Also results showed that MSCs markedly inhibited expressions of Th2 cytokines and elevated levels of Treg cells and Treg cytokines. Conclusion: In the present study, we demonstrated the inhibitory effect of MSCs on airway inflammation using mice model of allergic asthma. The mice were sensitized with OVA and compared to the results of dexamethasone administration. Our results demonstrated that administration of MSCs could be used as a potential therapeutic approach for the allergic asthma.
Leila Hosseinzadeh Anvar , Saeid Hosseini-Asl, Mohsen Sagha ,
Volume 74, Issue 5 (8-2016)
Abstract

Background: Telomerase as an enzyme with reverse transcriptase activity has an essential role in telomere maintenance by adding a telomere repeat sequence to the 3' end of chromosome and is important for regulating of many processes in embryonic development including cell proliferation and differentiation. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with a self-renewal capacity are cells that can differentiate into various germ layer derivatives including neural cells and cardiomyocytes, and undergo biological changes during long-term cultivation. Hence, the passage number in which the cells expanded seems to be very important for proliferating and differentiating. This study was aimed at investigating the relationship between the telomerase activity and the growth rate of (hUC-MSCs) at different passages.

Methods: This experimental study was performed in Ardabil University of Medical Sciences, Iran, from March 2014 to December 2014. The umbilical cord samples were obtained from full-term neonate hospitalized in Alavi’s Hospital in Ardabil under sterile conditions. The umbilical vessels were clear off and the small pieces of the umbilical cord were cultured in Dulbecco's modified eagle's medium (DMEM) supplemented with 20% fetal bovine serum (FBS). Then, the hUC-MSCs were harvested from passage one to three to calculate the population doubling time (PDT) and extract proteins by using CHAPS lysis buffer. Finally, the telomerase activity of the cells at different passages was measured by telomeric repeat amplification protocol (TRAP) and qRT-TRAP assays.

Results: The hUC-MSCs population doubling time at passage from 1 to 3 were calculated as the average of 54.68±1.92, 55.03±1.71 and 69.41±2.54 hours, respectively, suggesting the higher cell passage number, the more extended PDT. The threshold cycles (CTs) for the telomerase activity also showed 30.58±0.51, 27.24±0.74 and 32.13±0.75 for the cell passage from one to three, respectively, representing the significant increasing in telomerase activity at passage two compared with the other passages (P= 0.021).

Conclusion: Analysis of the growth curve, PDT determination and measurement of telomerase activity of the human umbilical cord-derived mesenchymal stem cells showed that the long-term cell culture can affect on the cell proliferation and the telomerase activity.


Mohsen Sheykhhasan , Mahdieh Ghiasi ,
Volume 75, Issue 9 (12-2017)
Abstract

Stem cells are undifferentiated biological cells that can differentiate into more specialized cells and divide (through mitosis) to produce more stem cells (self-renew). In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. Mesenchymal stem cells (MSCs) are multipotent cells that are called as one of the most adult stem cells. Due to their highly proliferative potential and their suitable self-renewal capacity, these cells have provided a powerful and promising source for use in the field of regenerative medicine. Also, mesenchymal stem cells are known for their important properties involving multilineage differentiation potential, trophic factor secretion and localization along various organs and tissues. So that MSCs can differentiate into a variety of cell lineages, including: Osteoblasts (bone cells), chondrocytes (cartilage cells), adipocytes (fat cells), myocytes (muscle cells), hepatocytes (liver cells) and endothelial cells. Efficacy of differentiated MSCs to regenerate cells in the injured tissues requires the ability to maintain the differentiation toward the desired cell fate. Since MSCs represent an attractive source for autologous transplantation, cellular and molecular signaling pathways and micro-environmental changes have been studied in order to understand the role of cytokines, chemokines, and transcription factors on the differentiation of MSCs. The differentiation of MSC into a mesenchymal lineage is genetically manipulated and promoted by specific transcription factors associated with a particular cell lineage. Recent studies have explored the integration of transcription factors, including Runx2, Sox9, PPARγ, MyoD, GATA4, and GATA6 in the differentiation of MSCs. Therefore, the overexpression of a single transcription factor in MSCs may promote trans-differentiation into specific cell lineage, which can be used for treatment of some diseases. In this review, we critically discussed and evaluated the role of transcription factors and related signaling pathways that affect the differentiation of MSCs toward adipocytes, chondrocytes, osteocytes, skeletal muscle cells, cardiomyocytes, and smooth muscle cells.
 

Sona Zare, Rahim Ahmadi, Abdolreza Mohammadnia , Mohammad Ali Nilforouszadeh, Minoo Mahmoodi,
Volume 78, Issue 12 (3-2021)
Abstract

Background: The application of mesenchymal stem cells in the healing of chronic wounds is one of the most challenging issues in cell therapy. The present study investigated the efficacy of intradermal injection of umbilical cord Wharton's Jelly-derived mesenchymal stem cells in diabetic wound healing using ultrasound imaging in an animal model.
Methods: During this experimental laboratory study that was performed in the Skin and Stem Cell Research Center, Tehran University of Medical Sciences between October 2017 and October 2016, mesenchymal stem cells were isolated from umbilical cord Wharton's jelly of 10 neonates. The cells were passage. The differentiation potential of cells to osteocyte and adipose cells was evaluated. The expression of specific markers of mesenchymal stem cells was evaluated using flow cytometry. The viability and quality of cells were evaluated before transplantation. The diabetes model was developed by intraperitoneal injection of streptozotocin in 42 male Wistar rats. The animals were randomly divided into two groups: normal saline injection (control) and cell injection. Cell transplantation was performed intradermally. Skin thickness and density were assessed using ultrasound imaging on days 7, 14 and 21. Finally, the data were analyzed using a t-test and analysis of variance.
Results: Injection of mesenchymal stem cells caused faster closing of the wound. The results of biometric measurement of wound skin in rats showed that skin thickness and density on days 7, 14 and 21 in the Wharton jelly mesenchymal stem cell injection group had a significant increase compared to the control group.
Conclusion: The results of cell analysis showed that the isolated cells are the same as mesenchymal stem cells. The cells were of the required health and quality. Intradermal injection of mesenchymal stem cells in diabetic wound area caused faster healing in diabetic rats, according to which, such stem cells can be considered in cell therapy, especially in the field of chronic wound healing.

Mohammad Ali Nilforoushzadeh, Sona Zare, Rahim Ahmadi, Nasrin Zoroufi, Mina Mahmoodipour,
Volume 79, Issue 3 (6-2021)
Abstract

Background: The number of patients suffering from diabetic ulcers has been increased in recent years and the current therapies have faced failure. This study aimed to investigate the effects of Wharton’s jelly stem cells (WJMSCs) on the diabetic wound in an animal mode.
Methods: During this laboratory experimental study carried out in Skin and Stem Cells Research Center from March 2021 to November 2021, WJMSCs were isolated and their differentiation capability to osteocytes and adipose cells was assessed using the colorimetric method, and the expression of specific markers was evaluated using flow cytometry. 12 male Wistar rats weighing 200 to 250 grams were purchased from the Pasteur Institute and kept in the animal room in standard condition. Streptozotocin was used to induce diabetes in male Wistar rats. Animals were divided to control (normal saline injection: n=6) and WJMSCs injection (n=6) groups. Wounds with 0.8 cm in diameter were made on the back of rats. After subdermal injection of normal saline and WJMSCs, wound healing was evaluated 7, 14 and 21 days using the photography method. Data were analyzed using a t-test and analysis of variance.
Results: The results showed that the isolation process should be performed no later than a few hours after the cesarean section. Storing the sample for one day or more caused sample contamination leading to significant failure in cell proliferation and differentiation. WJMSCs were positive for specific mesenchymal stem cell markers (CD44, D73, CD90 and CD 105, and negative for CD45 and CD 34. They were capabale to differentiate into osteocytes and adipose cells and had a high viability rate (83.1%). Subdermal injection of WJMSCs in diabetic rats resulted in acceleration of diabetic wound healing compared with the control group.
Conclusion: Subdermal injection of WJMSCs can effectively accelerate diabetic wound healing. According to which, applying Wharton’s jelly stem cells can be considered in cell therapy particularly in the field of diabetic wound healing.

Mohsen Barouni , Zohreh Shaker, Zinab Shaker , Asma Sabermahani ,
Volume 80, Issue 10 (1-2023)
Abstract

Background: Cerebral palsy is a movement disorder syndrome in early childhood. Signs and symptoms vary among people and over time but include poor coordination, stiff muscles, and weak muscles. Some affected children can achieve near-normal adult lives with appropriate treatment. In recent years, transplantation of human mesenchymal stem cells (hMSC) has become a promising therapeutic strategy for CP. Every year, a lot of costs are spent on the treatment and management of this disease. The purpose of this study is to investigate the safety and effectiveness of this method on CP.
Methods: This article is a systematic review. At first, a search strategy was written and performed in Scopus, PubMed, and Google Scholar databases(The search was conducted from March 14 to March 28, 2021), and the inclusion and exclusion criteria were determined. Study inclusion criteria: review studies, cohort studies, clinical trial studies (randomized and non-randomized), control case, and retrospective , exclusion criteria: non-English articles and studying on animals. After removing duplicate articles, two authors independently reviewed the studies according to the inclusion and exclusion criteria. Disagreements among the authors were resolved through discussion.
Findings: In total, 9236 articles were found in the initial search, after reading the titles, of 37 articles, 21 articles were selected in the abstract stage and 18 articles remained in the full-text stage. We finally found 18 articles that showed that using stem cell technology as a scientific method could improve sick patients’ quality of life and movement defects.
Conclusion: According to the available evidence and limited studies, stem cell technology can be safeand cost-effective in improving CP patients, but there is insufficient evidence. On the other hand, there are many studies confirming the effectiveness of these cells in the treatment of movement impairment. In conclusion, stem cells may have a very promising future. Finally, stem cell technology combined with innovative biotechnologies may soon bring promising results to patients.


Page 1 from 1     

© 2025 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb