Search published articles


Showing 2 results for Polyether Sulfone

Fatemeh Eskandari , Masoud Soleimani , Nasim Kalantari , Mehdi Azad , Amir Allahverdi ,
Volume 72, Issue 11 (2-2015)
Abstract

Background: Hematopoietic stem cell transplantation (HSCT) is a therapeutic approach in treatment of hematologic malignancies and incompatibility of bone marrow. Umbilical cord blood (UCB) known as an alternative for hematopoietic stem/ progenitor cells (HPSC) for in allogenic transplantation. The main hindrance in application of HPSC derived from umbilical cord blood is the low volume of collected samples. So, ex vivo expansion of HPSCs is the useful approach to overcome this restriction. Synthetic biomaterials such as nanofibers is used to produce synthetic niches. The aim of this study was the ex vivo expansion of hematopoietic stem cells on biocompatible nanofiber scaffolds. Methods: This study was done at Tarbiat Modares University from November 2012 to June 2013 and was a research study. Umbilical cord blood CD133+ hematopoietic stem cells were separated using MidiMacs (positive selection) system by means of monocolonal antibody (microbeads) CD133. Flow cytometry was used to assess the purity of cells. Cell culture was done on plate (2 Dimensional) and fibronectin conjougated polyether sulfone nanofiber scaffold (3 Dimensional). Colony assay test was used to asses the ability of colonization of cells. Results: Cell count analysis revealed the expansion of hematopoietic stem cells in cell culture plate (2D environment) and on nanofiber scaffold (3D environment) after 2 weeks. Expansion of cells in 2D environment was greater than 3D condition. Colony assay test revealed that the colonization ability of cells decreased after 2 weeks, but this decrease was lower in scaffold culture than plate culture. Conclusion: This study demonstrated that umbilical cord blood CD133+ hematopoietic stem cells can expand on fibronectin conjugated polyether sulfone scaffold and we can use this system for expanding of cells in vitro situation.
Mohammd Javad Fatemi , Shirin Chehroudi , Tooran Bagheri , Sahar Saleh , Amir Atashi , Mohsen Saberi , Seyed Aboozar Hoseini , Shirin Araghi ,
Volume 74, Issue 12 (3-2017)
Abstract

Background: Acute and chronic wound healing has always been problematic. Stem cells with or without the scaffold carrying these cells have been proposed as new methods in the treatment of wounds. In this case study we have tried to examine the effect of scaffold made of polyether sulfone (PES) alone, with stem cells and along with stem cell and growth factor on wound healing in rats.

Methods: This experimental study was conducted in Animal Laboratory of Hazrat Fatemeh Hospital in 2012. In this study, 48 rats were randomly divided into four groups. A wound created on the back of each rat at the size of 3×3 cm. The surface of the wound in the first group is covered with PES seeded with adipose-derived stem cell (ASC) and growth factor (GF), in the second group with polyether Sulfone seeded with ASC, in the third group only with PEWS, and in the fourth group (control) with Vaseline gauze. On 20th and 35th days, the surface of the wound was assessed by photography in order to understand the process of healing. In addition, on days 20 and 45, the histopathology characteristics of the samples were studied with a biopsy of the wounds.

Results: The Results of wound healing in the control group was better than the other groups and its statistical difference between others was meaningful. (P=0.008, P=0.013, P=0.001) On day 20, by examining histopathological characteristics including epithelialization, the number of inflammatory cells, the amount of angiogenesis and collagen synthesis in control group, we gained better results. (P=0.000), But on day 45, the results in different parameters were not equal.

Conclusion: polyether sulfone scaffold alone or with adipose-derived stem cells couldn’t improve the process of wound healing. Also adding vascular endothelial growth factor (VEGF) did not change the results significantly.



Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb