Breast cancer is the most commonly diagnosed cancer in women worldwide. Enormous advancement has been made over the last decades in understanding the biology of breast cancer. Nevertheless, the molecular mechanisms regulating progression, gaining of invasive and metastatic phenotypes, and therapeutic resistance are still not completely understood. Oxidative stress initiate by disbalance in redox status of body. In this case, increase of free radicals in body cause tissue damage. One of the significant species of free radicals is reactive oxygen species (ROS) that produced by various metabolic pathways, comprising aerobic metabolism in the mitochondrial respiratory chain. They play a serious role in cellular physiology and pathophysiology likewise beginning and evolution of numerous types of cancers. ROS overproduction is deleterious to cells, and considered key-factors for the development of numerous diseases, such as cardiovascular disorders, neurodegenerative diseases, and cancer. Cancer cells are commonly submitted to upper ROS levels that further incite malignant phenotype through motivation to preserved proliferation, angiogenesis, death evasion, invasiveness, and metastasis. ROS impress various signaling pathways, comprising mitogenic pathways and growth factors, and also controls numerous cellular processes, containing cell proliferation, thus stimulates the undisciplined growth of cells which inspires the development of tumors and initiates the progression of carcinogenesis. The importance of ROS on breast cancer development and etiology is being increasingly clarified. Nevertheless, fewer consideration has been given to the progress of redox system-targeted strategies for breast cancer treatment. Augmented oxidative stress caused by reactive species can diminish the body’s antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are core factors in the development of cancer. Bimolecular reactions cause free radicals which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances known as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated by hope that better exploration of the factors involved in the occurrence and spread of cancer will improve the identification of treatment aims.