جستجو در مقالات منتشر شده


2 نتیجه برای سیگنال الکتروانسفالوگرام

ساناز جعفری، احمد شالباف، جمی اسلی،
دوره 78، شماره 6 - ( 6-1399 )
چکیده

زمینه و هدف: اطمینان از کافی بودن عمق بیهوشی به هنگام عمل جراحی امری ضروری برای متخصصین بیهوشی، به‌منظور پیشگیری از احتمال بروز حالاتی چون هشیاری ناخواسته در حین عمل جراحی و یا عدم بازگشت بیمار به هشیاری می‌باشد. مطالعه حاضر با هدف تعیین عمق بیهوشی براساس سیگنال الکتروانسفالوگرم با استفاده از روش‌های موثر ارتباطات مغزی بین نواحی فرونتال و تمپورال انجام شده است.
روش بررسی: در این پژوهش که از اردیبهشت تا دی ۱۳۹۷ در تهران به طول انجامیده است، از سیگنال الکتروانسفالوگرافی هشت نفر از بیماران بیمارستان وایکاتو نیوزلند (Waikato District Health Board, Hamilton, New Zealand) که تحت بیهوشی پروپوفول قرار گرفته بودند، استفاده شده است. در این مطالعه، ارتباطات مغزی موثر در نواحی فرونتال و تمپورال مغز با استفاده از روش‌های مختلف علیت گرنجر (Granger-Geweke causality, GGC) استخراج گردیده است. استخراج شاخص‌های ارتباط موثر در سه حالت (بیداری، بیهوشی و ریکاوری) محاسبه گردیده و سپس در انتها از شبکه عصبی پرسپترون (Perceptron neural network) به‌منظور طبقه‌بندی اتوماتیک فازهای بیهوشی استفاده شده است.
یافته‌ها: نتایج برای کلیه دادگان نشان می‌دهد که روش تابع انتقال جهت‌دار شده به‌دلیل واکنش سریع‌تر در هنگام دریافت دارو، تغییرات کم و توانایی بهتر در تشخیص اتوماتیک سه حالت بیهوشی در هنگام استفاده از شبکه عصبی مصنوعی، بهتر از شاخص BIS به‌عنوان مرجع حال حاضر تعیین عمق بیهوشی در استفاده‌های کلینیکال عمل می‌کند.
نتیجه‌گیری: تابع انتقال جهت‌دار می‌تواند اثر داروی پروپوفول را به‌طور موثر دنبال کند و حالت‌های بیهوشی را نسبت به سایر شاخص‌های ارتباطات موثر به‌خوبی تخمین بزند. همچنین این روش بهتر از شاخص BIS به‌عنوان یک مانیتور تجاری عمق بیهوشی عمل کرد.

فائزه مقدس، زهرا امینی، راحله کافیه،
دوره 80، شماره 10 - ( 10-1401 )
چکیده

زمینه و هدف: سیستم‌های رابط مغز و رایانه از طریق سیگنال‌های مغزی امکان ارتباط با دنیای بیرون را بدون استفاده از واسطه‌های فیزیولوژیکی برای افراد دارای ناتوانی جسمی فراهم می‌کند. یکی از انواع این سیستم‌ها، سیستم‌های مبتنی بر تصور حرکتی است. از مهمترین بخش‌ها در طراحی این سیستم‌ها، طبقه‌بندی سیگنال‌های مغزی مبتنی بر تصور حرکت به کلاس‌های تصور حرکت به‌منظور تبدیل به فرمان کنترلی است. در این مقاله یک روش نوین طبقه‌بندی سیگنال‌های مغزی مبتنی بر تصور حرکتی با استفاده از روش‌های یادگیری عمیق ارایه شده است.
روش بررسی: این مطالعه مقطعی در دانشکده فناوری‌های نوین پزشکی دانشگاه علوم‌ پزشکی اصفهان از بهمن 1398 تا تیر 1401 انجام شد در بلوک پیش-پردازش قطعه‌بندی سیگنال‌های مغزی، انتخاب کانال‌های مناسب و استفاده از فیلتر باترورث (Butterworth filter)، سپس تبدیل موجک جهت انتقال به حوزه زمان-فرکانس و در قسمت طبقه‌بندی از دو طبقه‌بند شبکه یادگیری عمیق کانولوشنی یک‌بعدی با دو معماری و شبکه یادگیری عمیق کانولوشن دوبعدی با دو معماری با ورودی سه موجک مادر Cmor، Mexicanhat و Cgaus به کار گرفته شده و درنهایت عملکرد شبکه‌ها بررسی شده‌اند.
یافته‌ها: سه کانال برای 9 سوژه موردنظر، به‌عنوان بهترین کانال‌ها انتخاب شدند. همچنین پس از یافتن پارامترهای بهینه در ساختار داده، تبدیل موجک با موجک مادر Cgaus بالاترین درصد را در دو معماری پیشنهاد شده، دارد. صحت 53/92%، بالاترین صحت مربوط به معماری دوم شبکه عصبی کانولوشن دوبعدی پیشنهاد داده شده است.
نتیجه‌گیری: نتایج به‌دست آمده از شبکه‌های پیشنهاد شده، نشان‌دهنده آن است که شبکه‌های یادگیری عمیق مناسب می‌توانند به‌عنوان ابزاری مناسب و دقیق برای طبقه‌بندی دادگان مبتنی بر تصور حرکت مورد استفاده قرار گیرند.

 

صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb