Search published articles


Showing 3 results for Mansouri

R Goodarzi Rad , V Sharifi , A Rahimi-Movaghar , A Farhoudian , E Sahimi, M.r Mohammadi , N Mansouri , A Nejatisafa ,
Volume 4, Issue 3 (3 2006)
Abstract

Background and Aim: To describe the trends in research articles in the field of mental health.
Materials and Methods: The articles that we reviewed belonged to the fields of psychiatry, psychology, and neuroscience. We limited the search to the literature published over the 30-year period from 1973 to 2002. The following types of data were extracted: areas of research, specific topics, study design, location for data collection, funding sources, and the different types of working relationship among the authors.
Results: Analysis of publication trends in 3031 articles showed a marked increase in the total number of publications with time, especially over the last 5 years. As for different research areas, we detected a growing proportion of articles in the field of neuroscience and a decline in articles dealing with mental health. The volume of research in the fields of psychology, epidemiology and clinical sciences remained relatively constant. There was a rise in the proportion of cross-sectional studies and clinical trials in the second half of the 30-year period.
Conclusion: It is important to find the reasons and implications for the waning interest in mental health. Our results could provide an empirical basis in policy making and strategic planning for research in this area
Fatemeh Mansouri, Narges Khanjani, Laleh Ranandeh Kalankesh, Reza Pourmousa,
Volume 11, Issue 2 (11-2013)
Abstract


  Anderson, H.R., 2009. Air pollution and mortality: A history. Atmospheric Environment, 43, pp. 142-152 .

  Box, GEP. and Jenkins, G.M., 1976. Time series analysis: forecasting and control, San Francisco, Holden Day Pulications .

  Duenas, C., Fernandez, M.C., Canete, S., Carretero,Liger E, 2005. Stocastic model to forecast ground level ozone concentration at urban and rural areas . Chemosphere, 61(10), pp. 1379-1389 .

  Ghorbani, M. and Younesian, M., 1389. Research Projects in Air pollution Epidemiology. Iranian Epidemiology Journal . 5, pp. 44-52 [In Persian].

  Goyal, P., Chan, A.T. and Jaiswal, N., 2006. Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmospheric Environment, 40, pp. 2068-2077 .

  Hamilton, JD., 1994. Time series analysis, Princeton Publications, USA .

  Hosseinpour, A.R., Forouzanfar, M.H., Yunesian, M., Asghari, F., Holakouie Naieni, K. and Farhood, D., 2005. Air pollution and hospitalization due to angina pectoris in Tehran, Iran: A time-series study. Environmental Research, 99, pp. 126-131 [In Persian].

  Ingrisch, M., Sourbron, S., Reiser, M.F. and Peller, M., 2009. Model selection in dynamic contrast enhanced MRI: The Akaike Information Criterion. In Dössel, O. and Schlegel, WC. (Eds.) IFMBE Proceedings 25/IV

  Khosravi Dehkordi, A. and Modarres, R., 1386. Time Series analysis of the daily air pollution in Isfahan from the Petrolium Industry. Mohit shenasi. 33, pp. 33-42 [In Persian].

  Kumar, U. and De Ridder, K., 2010. GARCH modelling in association with FFT-ARIMA to forecast ozone episodes. Atmospheric Environment, 44, pp. 4252-4265.

  Lau, J.C., Hung, W.T., Yuen, D.D. and Cheung, C.S., 2009. Long memory characteristics of urban roadside air quality. Transportation Research Part D, 14, pp. 353-359 .

  Liang, W., Wei, H. and Kuo, H., 2009. Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environmental Research, 109, pp. 51-58 .

  Liu, P.G., 2009. Simulation of the daily average PM10 concentrations at Ta-Liao with Box–Jenkins time series models and multivariate analysis. Atmospheric Environment, 43, pp. 2104 - 2113 .

  López-Villarrubia, E., Ballester, F., Iñiguez, C. and Peral, N., 2010. Air pollution and mortality in the Canary Islands:a time-series analysis. Environmental Health, 9 .

  Lumbreras, J., Garcia-Martos, C., Mira, J. and Borge, R., 2009. Computation of uncertainty for atmospheric emission projections from key pollutant sources in Spain. Atmospheric Environment, 43, pp. 1557-1564 .

  Masjedi, M.R., Jamaati, H.R., Dokoohki, P., Ahmadzadeh, Z., Alinejad Taheri, S., Bigdeli, M., Agin, K., Ghavam, S.M., Rostiman, A. and Izadi S., 2001. The correlation between air pollution and acute respiratory and cardiac attacks. Pazhoohesh dar pezeshki, 25, pp. 25-33 [In Persian].

  Nasrollhi, Z. and Ghaffari Goolak, M., 2010. Air pollution and its effective factors. Faslnameh Pazhoohesh Eghtesadi, 3, pp. 375-395 [In Persian].

  Quintela-del-Rio, A. and Francisco-Fernandez, M., 2011. Nonparametric functional data estimation applied to ozone data: Prediction and extreme value analysis. Chemosphere, 82, pp. 800-808 .

  Rajarathnam, U., Sehgal M., Nairy S., Patnayak R.C., Chhabra S.K., Kilnani, K.V., R and Committee., HHR, 2011. Time Series study on air pollution and mortality in Dehli. Res Rep Health Eff Inst, Mar, pp. 47-74 .

  Samet, J.M., Dominici, F., Zeger, S.L., Schwartz, J. and Dockery, D.W., 2000. The national morbidity, mortality and air pollution study. Part 1: Methods and Methodologic Issues. Research Report 94 Cambridge, MA, Health Effects institute .

  Sharma, P., Chandra, A. and Kaushik, S.C., 2009. Forecasts using Box–Jenkins models for the ambient air quality data of Delhi City. Environ Monit Assess, 157, pp. 105–112 .

  Wagemakers, E. and Farrell, S., 2004. AIC model selection using Akaike weights. Psychonomic Bulletin and Review, 11, pp. 192-196 .

  Zhang, F., Wang, W., Lv, J., Krafft, T. and Xu, J., 2011. Time-series studies on air pollution and daily outpatient visits for allergic rhinitis in Beijing, China. Science of the Total Environment, 409, pp. 2486–2492 .


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


  Scientific Journal of School of Public Health and Institute of Public Health Research /85

  Vol. 11, No. 2, Summer 2013

  

  Forecasting ambient air pollutants by time series models in Kerman, Iran

  

  Mansouri, F., MS.c. Student, Dept of Environmental Health Engineering, Faculty of Public Health, Kerman Medical University, Kerman, Iran

  Khanjani, N., Ph.D. Assistant Professor, Department of Epidemiology and Department of Environmental Health, Faculty of Public Health, Kerman Medical University, Kerman, Iran - Corresponding author: n_khanjani@kmu.ac.ir

  Rananadeh Kalankesh, L., MS.c. Student, Department of Environmental Health Engineering, Faculty of Public Health, Kerman Medical University, Kerman, Iran

  Pourmousa, R., MS.c. Lecturer, Department of Statistics, School of Mathematics and Statistics, Shahid Bahonar University, Kerman, Iran

 

  

  Received: Apr 3, 2012 Accepted: Feb 14, 2013

 

  ABSTRACT

 

  Background and Aim: Air pollution is one of the most important problems of big cities in developing countries and can have several negative health effects on humans. Therefore studying these pollutants can help in developing programs for air pollution control. The aim of this study was to estimate and predict the changes of air pollutants in Kerman, Iran.

  Materials and Methods: In this ecological study, data about seven important air pollutants in Kerman including NO, CO, NO2, NOx, PM10, SO2 and O3 from March 2006 until September 2010 was inquired from the Kerman Province Environmental Protection Agency. Then the data was calculated as averages per month and by incorporating time series models, predictions were done for each pollutant.

  Results: All of the pollutants were steady in Kerman, except CO which is significantly decreasing and PM10 which is increasing. All of the pollutants had a seasonal pattern. Time series models with a 12, 3, 8, 12, 12, 12 and 6 month seasonal pattern were fit for O3 , SO2 , PM10 , NOx , NO2 , CO and NO consecutively.

  Conclusion: The production of ambient CO is decreasing in Kerman and one reason is probably replacing and retiring old automobiles. However PM10 is increasing in Kerman and in most seasons it is above standard and therefore control initiatives should be implemented.


Mehrasa Mohammadsadeghi, Niaz Mohammadzadeh Honarvar, Mostafa Qorbani, Anahita Mansouri, Fariba Kouhdani,
Volume 16, Issue 2 (9-2018)
Abstract

Background and Aim: Lipoprotein disorders are an integral component of type-2 diabetes mellitus (T2DM). Therefore, early diagnosis and treatment of lipid disorders can be beneficial in prevention and treatment of many complications associated with T2DM.The aim of this study wasto determine the effect of docosahexaenoic acid (DHA) supplementation on the serum levels of apolipoproteins (Apos) A1, A2, B48 and C3 in patients withT2DM.
Materials and Methods: In this 8-week randomized, double-blind, placebo-controlled clinical trial, 44 T2DMpatients were randomly assigned to either an experimental group (n=22, receiving daily 2.4 g DHA) or a placebo group (n = 22, receiving paraffin). The serum levels of AposA1, A2, B48 and C3 were measured in all the patients at the beginning and at the end of the period.
Results: There was a statistically significant increase in the mean serum level of ApoA1 in the DHA group (p = 0.014). In addition, a significant difference was observed in the serum level of ApoC3 after intervention between the DHA and placebo group (p=0.031). There were no significant differences between the two groups as regards the mean changes in serum levels of ApoA1, ApoA2, ApoB48 and ApoC3.
Conclusions: Dietary supplementation with docosahexaenoic acidhasno effects on the serum levels of apolipoproteins in patients with type-2 diabetes.

Page 1 from 1     

© 2024 , Tehran University of Medical Sciences, CC BY-NC 4.0

Designed & Developed by : Yektaweb